Very short answer questions

1. [2 marks] Each part is worth 1 marks. Please write your answers in the boxes. **Marking scheme:** 1 for each correct, 0 otherwise

Consider a function, \(h(x) \), whose third Maclaurin polynomial is \(-x + 2x^2 + \frac{2}{3}x^3\).

(a) What is \(h^{(3)}(0) \)?

Answer: 4

Solution: The third Maclaurin polynomial for \(h(x) \) is

\[
h(0) + h'(0)x + \frac{h''(0)}{2} \cdot x^2 + \frac{h^{(3)}(0)}{6} \cdot x^3 = -x + 2x^2 + \frac{2}{3}x^3.
\]

Thus \(h^{(3)}(0) = 6 \cdot \frac{2}{3} = 4 \) and for the next part, we note that \(h(0) = 0 \).

(b) What is \(h(0) \)?

Answer: 0

Short answer questions — you must show your work

2. [4 marks] Each part is worth 2 marks.

(a) Find the global maximum and the global minimum for \(f(x) = 2x^3 + 9x^2 + 2 \) on the interval \([-4, -1]\).

Solution: We compute \(f'(x) = 6x^2 + 18x \), which means that \(f(x) \) has no singular points (i.e., it is differentiable for all values of \(x \)), but it has two critical points obtained by solving \(f'(x) = 0 \), i.e. \(6x(x - 3) = 0 \) which yields the two critical points \(x = 0 \) and \(x = 3 \). In order to compute the global maximum and the global minimum for \(f(x) \) on the interval \([-4, -1]\), we compute

\[
f(-4) = 18, \ f(-3) = 29 \text{ and } f(-1) = 9.
\]

So, the global maximum is \(f(-3) = 29 \) while the global minimum is \(f(-1) = 9 \).

(b) Consider a function \(f(x) \) which has \(f'''(x) = \frac{e^x}{4 - x} \). Show that when we approximate \(f(0) \) using its second Taylor polynomial around \(x = -1 \), the absolute error is less than \(\frac{1}{20} = 0.05 \).

Solution:

- The error is bounded (in absolute value) by

\[
\max_{c \in [-1,0]} \left| \frac{f'''(c)}{3!} \cdot (0 - (-1))^3 \right| = \max_{c \in [-1,0]} \left| \frac{e^c}{6(4-c)} \right|.
\]

- Since \(c \in [-1,0] \), we know that \(\left| \frac{e^c}{6(4-c)} \right| = \frac{e^c}{6(4-c)} \) since both numerator and denominator are positive.
• When $-1 \leq c \leq 0$, we know that $e^{-1} \leq e^c \leq e^0 = 1$ and $5 \leq 4-c \leq 4$, and that numerator and denominator are non-negative, so

$$\left| \frac{e^c}{6(4-c)} \right| = \frac{e^c}{6(4-c)} \leq \frac{1}{6(4-c)} \leq \frac{1}{6 \cdot 4} = \frac{1}{24} \leq \frac{1}{20}$$

as required.

• Alternatively, notice that e^c is an increasing function of c, while $4-c$ is a decreasing function of c. Hence the fraction is an increasing function of c and takes its largest value at $c = 0$. Hence

$$\left| \frac{e^c}{6(4-c)} \right| \leq \frac{1}{6 \times 4} = \frac{1}{24} \leq \frac{1}{20}.$$

Marking scheme:

• 1 mark for writing that the error is bounded (in absolute value) by

$$\max_{c \in [-1,0]} \left| \frac{f'''(c)}{3!} \cdot (0 - (-1))^3 \right| = \max_{c \in [-1,0]} \left| \frac{e^c}{6(4-c)} \right|.$$

• 1 mark for explaining why $c = 0$ is the right choice and then verifying that in that case the error is still bounded above by 0.05.

• The students lose 1 mark if they don’t explain why $c = 0$ is the right choice (and they simply plug in $c = 0$, or compare the values they get between plugging in $c = 0$ and $c = -1$).

Long answer question — you must show your work

3. [4 marks] A 20m long extension ladder leaning against a wall starts collapsing at a rate of 2m/s, while the foot of the ladder remains a constant 5m from the wall. How fast is the ladder moving down the wall after 3.5 seconds?

Solution:

• If we write $z(t)$ for the length of the ladder at time t and $y(t)$ for the height of the top end of the ladder at time t we have

$$z(t)^2 = 5^2 + y(t)^2.$$

• We differentiate the above equation with respect to t and get

$$2z \cdot z' = 2y \cdot y'.$$
• We are told that $z'(2.5) = -2$ and $z(2.5) = 20 - 3.5 \cdot 2 = 13$.

• At this point $y = \sqrt{z^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12$.

• Hence

\[
2 \cdot 13 \cdot (-2) = 2 \cdot 12y' \\
y' = -\frac{2 \cdot 13}{12} = -\frac{13}{6} \text{ meters per second.}
\]

Marking scheme:

• 1 mark for obtaining the equation $2z(t) \cdot z'(t) = 2x \cdot x'$.

• 1 mark for $z' = -2$, $z = 13$ all correct.

• 1 mark for computing $y(2.5) = 12$.

• 1 mark for obtaining the correct answer $y'(2.5) = -\frac{13}{6} \text{ m/s.}$