Very short answer questions

1. \[\frac{2 \text{ marks}}{} \] Each part is worth 1 marks. Please write your answers in the boxes.

Marking scheme: 1 for each correct, 0 otherwise

Consider the function, \(h(x) = 2x^3 - 6x^2 + 2 \).

(a) What are the coordinates of the local maximum of \(h(x) \)?

Answer: \((0, 2)\)

Solution: The function \(h(x) \) has critical points, but no singular points since its derivative \(h'(x) = 6x^2 - 12x \) is defined for all values of \(x \). The critical points of \(h(x) \) are computed by equating \(h(x) = 0 \) which yields

\[6x^2 - 12x = 0, \text{ i.e. } x(x - 2) = 0, \]

and thus \(x = 0 \) and \(x = 2 \). Using either the Second Derivative Test, i.e. computing \(h''(x) = 12x - 12 \) and then plugging in the critical numbers \(x = 0 \) and \(x = 2 \) in \(h''(x) \), or by simply noticing that \(h'(x) \) changes from positive to negative at \(x = 0 \) and from negative to positive at \(x = 2 \), we conclude that \(x = 0 \) is a point of local maximum, while \(x = 2 \) is a point of local minimum. We compute \(f(0) = 2 \) and \(f(2) = 2 \times 8 - 6 \times 4 + 2 = -6 \).

(b) What are the coordinates of the local minimum of \(h(x) \)?

Answer: \((2, -6)\)

Short answer questions — you must show your work

2. \[\frac{4 \text{ marks}}{} \] Each part is worth 2 marks.

(a) Find the intervals where \(f(x) = \arcsin(x) + 2\sqrt{1-x^2} \) is increasing.

Solution: First of all, \(f(x) \) is only defined on \([-1, 1]\). In order to find where \(f(x) \) is increasing we compute \(f'(x) \) and see where it is positive.

\[f'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{2x}{\sqrt{1-x^2}} = \frac{1 - 2x}{\sqrt{1-x^2}} \]

This is defined on \((-1, 1)\). The denominator is positive on that domain, while the numerator is positive when \(1 - 2x > 0 \). Hence \(f \) is increasing on \((-1, 1/2)\).

Marking scheme:

- 1 mark for computing \(f'(x) \), i.e. \(f'(x) = \frac{1 - 2x}{\sqrt{1-x^2}} \).
- 1 mark for writing the correct interval where \(f(x) \) is increasing; also accept interval including one or both endpoints.
(b) Let \(f(x) = (x - \pi)^2 - \sin(x) + \cos(x) \). Show that there exists a real number \(c \) such that \(f'(c) = 0 \).

Solution: We note that \(f(0) = f(2\pi) = \pi^2 - 0 + 1 \). Then using the Mean Value Theorem (note that the function is differentiable for all real numbers), we get that there exists \(c \in (0, 2\pi) \) such that

\[
f'(c) = \frac{f(2\pi) - f(0)}{2\pi - 0} = 0.
\]

Marking scheme:

- 1 mark for writing that \(f(0) = f(2\pi) = 1 + \pi^2 \).
- 1 mark for invoking Mean Value Theorem (or Rolle) correctly to conclude the existence of \(c \in (0, 2\pi) \) such that \(f'(c) = 0 \).
- Alternatively the students could differentiate \(f \) and then apply Intermediate Value Theorem (IVT) for \(f'(x) \). Since \(f'(x) = 2(x - \pi) - \cos x - \sin x \), one notes that \(f(0) = -2\pi - 1 < 0 \) and \(f(2\pi) = 2\pi - 1 > 0 \) and since \(f'(x) \) is continuous for all real values, then there exists \(c \in (0, 2\pi) \) such that \(f'(c) = 0 \), by IVT. For this approach = 1 mark for evaluating derivative at 2 sensible points and 1 mark for applying IVT.

Long answer question — you must show your work

3. **4 marks** Find the global maximum and the global minimum for \(f(x) = 3x^4 - 4x^3 + 3 \) on the interval \([-1, 2]\).

Solution: We compute \(f'(x) = 12x^3 - 12x^2 \), which means that \(f(x) \) has no singular points (i.e., it is differentiable for all values of \(x \)), but it has two critical points obtained by solving \(f'(x) = 0 \), i.e., \(0 = 12(x^3 - x^2) = 4x^2(x - 1) \) which yields the two critical points \(x = 0 \) and \(x = 1 \). In order to compute the global maximum and the global minimum for \(f(x) \) on the interval \([-1, 2]\), we compute

\[
\begin{align*}
f(-1) &= 3 + 4 + 3 = 10 \\
f(0) &= 3 \\
f(1) &= 2 \\
f(2) &= 48 - 32 + 3 = 19
\end{align*}
\]

So, the global maximum is \(f(2) = 19 \) while the global minimum is \(f(1) = 2 \).

Marking scheme:

- 1 mark for finding \(x = 0, 1 \) as the only critical (and singular) points in \([-1, 2]\).
- 2 marks for computing \(f(-1), f(2), f(0) \) and \(f(1) \). If they compute one value wrong (or they are not computed), then they lose 1 mark. If at least two values values are computed wrong (or not computed), then they lose 2 marks.
- 1 mark for writing correctly that \(f(1) = 2 \) is the global minimum, while \(f(2) = 19 \) is the global maximum.
Very short answer questions

1. \(2\) marks Each part is worth 1 mark. Please write your answers in the boxes. \textbf{Marking scheme:} 1 for each correct, 0 otherwise

Consider the function, \(h(x) = x^3 - 3x + 5\).

(a) What are the coordinates of the \underline{local} maximum of \(h(x)\)?

\textbf{Answer:} \((-1, 7)\)

\textbf{Solution:} The function \(h(x)\) has critical points, but no singular points since its derivative \(h'(x) = 3x^2 - 3\) is defined for all values of \(x\). The critical points of \(h(x)\) are computed by equating \(h(x) = 0\) which yields

\[3x^2 - 3 = 0, \text{ i.e. } x^2 = 1,\]

and thus \(x = -1\) and \(x = 1\). Using either the Second Derivative Test, i.e. computing \(h''(x) = 6x\) and then plugging in the critical numbers \(x = -1\) and \(x = 1\) in \(h''(x)\), or by simply noticing that \(h'(x)\) changes from positive to negative at \(x = -1\) and from negative to positive at \(x = 1\), we conclude that \(x = -1\) is a point of local maximum, while \(x = 1\) is a point of local minimum. We compute \(f(-1) = 7\) and \(f(1) = 3\).

(b) What are the coordinates of the \underline{local} minimum of \(h(x)\)?

\textbf{Answer:} \((1, 3)\)

Short answer questions — you must show your work

2. \(4\) marks Each part is worth 2 marks.

(a) Find the intervals where \(f(x) = \sqrt{x + 6}\) is increasing.

\textbf{Solution:} First of all, \(f(x)\) is defined for all \(x \geq 0\) due to the presence of the square-root. In order to find where is \(f(x)\) increasing, we find where is \(f'(x)\) positive. So,

\[f'(x) = \frac{1}{2\sqrt{x + 6}} \cdot (x + 6) - \frac{\sqrt{x} \cdot 1}{(x + 6)^2} = \frac{x + 6 - 2x}{2\sqrt{x} \cdot (x + 6)^2} = \frac{6 - x}{2\sqrt{x} \cdot (x + 6)^2}\]

and thus, since the denominator is always positive, we conclude that \(f(x)\) is increasing when \(f'(x) > 0\), i.e. when \(6 - x > 0\). Recalling that the domain of definition for \(f(x)\) is \([0, +\infty)\), we conclude that \(f(x)\) is increasing on the interval \((0, 6)\). \textbf{Marking scheme:}

- 1 mark for computing \(f'(x)\), i.e. \(f'(x) = \frac{6-x}{2\sqrt{x}(x+6)^2}\).
- 1 mark for writing the correct interval where \(f(x)\) is increasing; it is acceptable also \([0, 6]\), but \textbf{not} acceptable \((-\infty, 6)\).
(b) Let \(f(x) = x^2 - 2\pi x - \sin(x) \). Show that there exists a real number \(c \) such that \(f'(c) = 0 \).

Solution: We note that \(f(0) = f(2\pi) = 0 \). Then using the Mean Value Theorem (note that the function is differentiable for all real numbers), we get that there exists \(c \in (0, 2\pi) \) such that

\[
f'(c) = \frac{f(2\pi) - f(0)}{2\pi - 0} = 0.
\]

Marking scheme:

- 1 mark for writing that \(f(0) = f(2\pi) = 0 \).
- 1 mark for invoking Mean Value Theorem (or Rolle) correctly to conclude the existence of \(c \in (0, 2\pi) \) such that \(f'(c) = 0 \).
- Alternatively the students could differentiate \(f \) and then apply Intermediate Value Theorem (IVT) for \(f'(x) \). Since \(f'(x) = 2x - 2\pi - \cos(x) \), one notes that \(f'(0) = -2\pi - 1 < 0 \) and \(f'(2\pi) = 2\pi - 1 > 0 \) and since \(f'(x) \) is continuous for all real values, then there exists \(c \in (0, 2\pi) \) such that \(f'(c) = 0 \), by IVT. For this approach = 1 mark for evaluating derivative at 2 sensible points and 1 mark for applying IVT.

Long answer question — you must show your work

3. [4 marks] Find the global maximum and the global minimum for \(f(x) = x^3 - 6x^2 + 2 \) on the interval \([3, 5]\).

Solution: We compute \(f'(x) = 3x^2 - 12x \), which means that \(f(x) \) has no singular points (i.e., it is differentiable for all values of \(x \)), but it has two critical points obtained by solving \(f'(x) = 0 \), i.e. \(3x(x - 4) = 0 \) which yields the two critical points \(x = 0 \) and \(x = 4 \). In order to compute the global maximum and the global minimum for \(f(x) \) on the interval \([3, 5]\), we compute

\[
f(3) = -25, f(4) = -30 \text{ and } f(5) = -23.
\]

So, the global maximum is \(f(5) = -23 \) while the global minimum is \(f(4) = -30 \).

Marking scheme:

- 1 mark for writing that \(x = 4 \) is the only critical (and singular) point of \(f(x) \) in the interval \([3, 5]\).
- 2 marks for computing \(f(3) \), \(f(4) \) and \(f(5) \). If they compute one or two values wrong (or they are not computed), then they lose 1 mark. If all three values are computed wrong (or not computed), then they lose 2 marks.
- 1 mark for stating BOTH \(f(4) = -30 \) is the global minimum, and \(f(5) = -23 \) is the global maximum.
Very short answer questions

1. 2 marks Each part is worth 1 marks. Please write your answers in the boxes. Marking scheme: 1 for each correct, 0 otherwise
Consider the function, \(h(x) = x^3 - 12x + 4 \).
(a) What are the coordinates of the local maximum of \(h(x) \)?

Answer: \((-2, 20)\)

Solution: The function \(h(x) \) has critical points, but no singular points since its derivative \(h'(x) = 3x^2 - 12 \) is defined for all values of \(x \). The critical points of \(h(x) \) are computed by equating \(h(x) = 0 \) which yields
\[
3x^2 - 12 = 0, \text{ i.e. } x^2 = 4,
\]
and thus \(x = -2 \) and \(x = 2 \). Using either the Second Derivative Test, i.e. computing \(h''(x) = 6x \) and then plugging in the critical numbers \(x = -2 \) and \(x = 2 \) in \(h''(x) \), or by simply noticing that \(h'(x) \) changes from positive to negative at \(x = -2 \) and from negative to positive at \(x = 2 \), we conclude that \(x = -2 \) is a point of local maximum, while \(x = 2 \) is a point of local minimum. We compute \(f(-2) = 20 \) and \(f(2) = -12 \).

(b) What are the coordinates of the local minimum of \(h(x) \)?

Answer: \((2, -12)\)

Short answer questions — you must show your work

2. 4 marks Each part is worth 2 marks.
(a) Find the intervals where \(f(x) = \sqrt{\frac{x-1}{2x+4}} \) is increasing.

Solution: First of all, \(f(x) \) is defined for all \(x \geq 1 \) due to the presence of the square-root. We also need \(x \neq -2 \) for the denominator, but this is covered by \(x \geq 1 \). In order to find where is \(f(x) \) increasing, we find where is \(f'(x) \) positive. So,
\[
f'(x) = \frac{2x+4}{2\sqrt{x-1}} - 2\sqrt{x-1} \frac{2x+4}{(2x+4)^2} = \frac{(x+2) - 2(x-1)}{\sqrt{x-1}(2x+4)^2} = \frac{-x+4}{\sqrt{x-1}(2x+4)^2}
\]
Note the denominator is never negative, so we conclude that \(f(x) \) is increasing when the numerator of \(f'(x) \) is positive, i.e. when \(4 - x > 0 \), or \(x < 4 \). Recalling that the domain of definition for \(f(x) \) is \([1, +\infty)\), we conclude that \(f(x) \) is increasing on the interval \((1, 4)\). **Marking scheme:**

- 1 mark for computing \(f'(x) \), i.e. \(f'(x) = \frac{4-x}{\sqrt{x-1}(2x+4)^2} \).
- 1 mark for writing the correct interval where \(f(x) \) is increasing; it is acceptable also \([1, 4]\), but **not** acceptable \((-\infty, 4)\).
(b) Let $f(x) = x^2 - 3\pi x + \sin(x)$. Show that there exists a real number c such that $f'(c) = 0$.

Solution: We note that $f(0) = f(3\pi) = 0$. Then using the Mean Value Theorem (note that the function is differentiable for all real numbers), we get that there exists $c \in (0, 3\pi)$ such that

$$f'(c) = \frac{f(3\pi) - f(0)}{3\pi - 0} = 0.$$

Marking scheme:

- 1 mark for writing that $f(0) = f(3\pi) = 0$.
- 1 mark for invoking Mean Value Theorem (or Rolle) correctly to conclude the existence of $c \in (0, 3\pi)$ such that $f'(c) = 0$.
- Alternatively the students could differentiate f and then apply Intermediate Value Theorem (IVT) for $f'(x)$. Since $f'(x) = 2x - 3\pi + \cos(x)$, one notes that $f'(0) = -3\pi + 1 < 0$ and $f'(3\pi) = 3\pi - 1 > 0$ and since $f'(x)$ is continuous for all real values, then there exists $c \in (0, 3\pi)$ such that $f'(c) = 0$, by IVT. For this approach = 1 mark for evaluating derivative at 2 sensible points and 1 mark for applying IVT.

Long answer question — you must show your work

3. [4 marks] Find the global maximum and the global minimum for $f(x) = x^5 - 5x - 10$ on the interval $[0, 2]$.

Solution: We compute $f'(x) = 5x^4 - 5$, which means that $f(x)$ has no singular points (i.e., it is differentiable for all values of x), but it has two critical points obtained by solving $f'(x) = 0$, i.e. $5(x^4 - 1) = 0$ which yields the two critical points $x = -1$ and $x = 1$. In order to compute the global maximum and the global minimum for $f(x)$ on the interval $[0, 2]$, we compute

$$f(0) = -10, \ f(1) = -14 \text{ and } f(2) = 12.$$

So, the global maximum is $f(2) = 12$ while the global minimum is $f(1) = -14$.

Marking scheme:

- 1 mark for writing that $x = 1$ is the only critical (and singular) point of $f(x)$ in the interval $[0, 2]$.
- 2 marks for computing $f(0), f(1)$ and $f(2)$. If they compute one or two values wrong (or they are not computed), then they lose 1 mark. If all three values are computed wrong (or not computed), then they lose 2 marks.
- 1 mark for stating BOTH $f(1) = -14$ is the global minimum, and $f(2) = 12$ is the global maximum.
Very short answer questions

1. [2 marks] Each part is worth 1 marks. Please write your answers in the boxes. **Marking scheme:** 1 for each correct, 0 otherwise

Consider the function, \(h(x) = 2x^3 - 6x + 2 \).

(a) What are the coordinates of the **local** maximum of \(h(x) \)?

Answer: \((-1, 6)\)

Solution: The function \(h(x) \) has critical points, but no singular points since its derivative \(h'(x) = 6x^2 - 6 \) is defined for all values of \(x \). The critical points of \(h(x) \) are computed by equating \(h(x) = 0 \) which yields

\[6x^2 - 6 = 0, \text{ i.e. } x^2 - 1 = 0, \]

and thus \(x = -1 \) and \(x = +1 \). Using either the Second Derivative Test, i.e. computing \(h''(x) = 6x \) and then plugging in the critical numbers \(x = -1 \) and \(x = +1 \) in \(h''(x) \), or by simply noticing that \(h'(x) \) changes from positive to negative at \(x = -1 \) and from negative to positive at \(x = +1 \), we conclude that \(x = -1 \) is a point of local maximum, while \(x = +1 \) is a point of local minimum. We compute \(f(1) = -2 \) and \(f(-1) = -2 + 6 + 2 = 6 \).

(b) What are the coordinates of the **local** minimum of \(h(x) \)?

Answer: \((1, -2)\)

Short answer questions — you must show your work

2. [4 marks] Each part is worth 2 marks.

(a) Find the intervals where \(f(x) = xe^{-x^2/2} \) is increasing.

Solution: The function is defined on all reals. Its derivative is

\[f'(x) = e^{-x^2/2} + x \cdot (-x) \cdot e^{-x^2/2} = (1 - x^2)e^{-x^2/2} \]

Since \(e^{\text{blah}} > 0 \), the sign of the derivative is determined by the sign of \((1 - x^2)\). Hence the function is increasing when \((1 - x^2) > 0\), that is when \(x \in (-1, 1) \).

Marking scheme:

- 1 mark for computing \(f'(x) \), i.e. \(f'(x) = (1 - x^2)e^{-x^2/2} \).
- 1 mark for writing the correct interval where \(f(x) \) is increasing; also accept interval with one or both endpoints.

(b) Let \(f(x) = (x + \pi)^2 + \cos(x) \). Show that there exists a real number \(c \) such that \(f'(c) = 0 \).
Solution: We note that \(f(0) = f(-2\pi) = \pi^2 + 1 \). Then using the Mean Value Theorem (note that the function is differentiable for all real numbers), we get that there exists \(c \in (-2\pi, 0) \) such that

\[
 f'(c) = \frac{f(-2\pi) - f(0)}{-2\pi} = 0.
\]

Marking scheme:

- 1 mark for writing that \(f(0) = f(-2\pi) = 1 + \pi^2 \).
- 1 mark for invoking Mean Value Theorem (or Rolle) correctly to conclude the existence of \(c \in (-2\pi, 0) \) such that \(f'(c) = 0 \).
- Alternatively the students could differentiate \(f \) and then apply Intermediate Value Theorem (IVT) for \(f'(x) \). Since \(f'(x) = 2(x + \pi) - \sin x \), one notes that \(f(0) = 2\pi > 0 \) and \(f(-2\pi) = -2\pi < 0 \) and since \(f'(x) \) is continuous for all real values, then there exists \(c \in (-2\pi, 0) \) such that \(f'(c) = 0 \), by IVT. For this approach = 1 mark for evaluating derivative at 2 sensible points and 1 mark for applying IVT.

Long answer question — you must show your work

3. **4 marks** Find the global maximum and the global minimum for \(f(x) = 4x^3 - 6x^2 + 3 \) on the interval \([-1, 2]\).

Solution: We compute \(f'(x) = 12x^2 - 12x \), which means that \(f(x) \) has no singular points (i.e., it is differentiable for all values of \(x \)), but it has two critical points obtained by solving \(f'(x) = 0 \), i.e. \(0 = 12x(x - 1) \) which yields the two critical points \(x = 0 \) and \(x = 1 \). In order to compute the global maximum and the global minimum for \(f(x) \) on the interval \([-1, 2]\), we compute

\[
 f(-1) = -4 - 6 + 3 = -7 \\
 f(0) = 3 \\
 f(1) = 1 \\
 f(2) = 32 - 24 + 3 = 11
\]

So, the global maximum is \(f(2) = 11 \) while the global minimum is \(f(-1) = -7 \).

Marking scheme:

- 1 mark for finding \(x = 0, 1 \) as the only critical (and singular) points in \([-1, 2]\).
- 2 marks for computing \(f(-1), f(2), f(0) \) and \(f(1) \). If they compute one value wrong (or they are not computed), then they lose 1 mark. If at least two values values are computed wrong (or not computed), then they lose 2 marks.
- 1 mark for writing correctly that \(f(2) = 11 \) is the global max, while \(f(-1) = -7 \) is the global maximum.