Continue your result:

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\phi \phi \phi = \psi \psi \psi \]

\[\psi = \phi \phi \phi \]

\[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \phi \phi \phi \psi \psi \psi \psi \psi \]
\[\phi = \arccos \left(\frac{-1}{2} \right) \]

\[\phi = \arccos \left(\frac{-1}{2} \right) \]

\[\phi = \arccos \left(\frac{-1}{2} \right) \]

\[1 = \phi \times \frac{\pi}{2} + \phi \cos \phi - \phi \sin \phi \]

\[1 = \sqrt{\phi^2 \times \frac{\pi}{2} + (1 - \phi \cos \phi)} \]

\[1 = \phi \times \frac{\pi}{2} + \phi \cos \phi - \phi \sin \phi \]

\[1 = \sqrt{\phi^2 \times \frac{\pi}{2} + (1 - \phi \cos \phi)} \]

\[2 - 2\phi - 1 = 2(1 - \phi) \]

\[2 - 2\phi - 1 = 2(1 - \phi) \]

\[2h - 2x - 1 = 2(1 - \phi) \]

\[2h - 2x - 1 = 2(1 - \phi) \]

\[\frac{2h - 2x - 1}{1 + 1} = (1 - \phi) \]

\[\frac{2h - 2x - 1}{1 + 1} = (1 - \phi) \]

\[x \neq \frac{h + \sqrt{h^2 + x^2}}{2} \]

\[x \neq \frac{h + \sqrt{h^2 + x^2}}{2} \]

\[2h - 2x - 1 \neq 1 \]

\[2h - 2x - 1 \neq 1 \]

\[2 - 2h - 1 \neq 0 \]

\[2 - 2h - 1 \neq 0 \]

\[2x - 1 \neq 1 \]

\[2x - 1 \neq 1 \]

\[\text{Concentric to spherical case:} \]

\[\text{Concentric to spherical case:} \]

\[\phi' \neq \frac{\pi}{2} \]

\[\phi' \neq \frac{\pi}{2} \]
Easily. Can get idea of shape

In order to deduce know it is

Note: \(\int_0^\pi \cos \phi \, d\phi = 2 \cos \phi \)

\(\int_0^\pi \cos \phi \, d\phi = 2 \cos \phi \)

Calcutt, until the time to repeat steps above

Conversely, count angle to center (3)

\(\int_0^\pi \cos \phi \, d\phi = 2 \cos \phi \)

\(\int_0^\pi \cos \phi \, d\phi = 2 \cos \phi \)

\[\int_0^\pi \cos \phi \, d\phi = 2 \cos \phi \]
Rules Governing Examinations

- Examination materials from the examination room without permission shall not be removed.
- Candidates must not destroy or mutilate any examination notes.
- No food or drink is allowed in the examination room.
- Examination materials and devices other than those authorized by the examination shall not be used.
- Examination materials shall be immediately destroyed after the examination.
- Candidates are not permitted to ask questions of the examiners.
- Answers to all questions must be shown on the examination paper.
- No correction or modification of answers is allowed.
- No electronic devices or calculators are allowed.

Table

<table>
<thead>
<tr>
<th>Total</th>
<th>30</th>
<th>11</th>
<th>10</th>
<th>7</th>
<th>13</th>
<th>6</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Special Instructions:

- Closed book examination.
- No notes, aids, or calculators.

Note: The text above is a partial transcription of the image.

Note: This document contains a table with examination rules and instructions.

Note: The table includes examination scores.

Note: The document is part of a final examination for MATH 200 at The University of British Columbia.
Consider the integral \(\int_{\mathcal{D}} \int_{\mathcal{R}} \int_{\mathcal{S}} = I \)
Problem 5.2 of Vector Calculus

(a) Calculate the volume of the solid enclosed by the given surfaces.

(b) Evaluate the integral
\[\iiint_V \frac{1}{r} \, dV \]

(c) Evaluate the surface integral
\[\iint_S \mathbf{F} \cdot d\mathbf{S} \]

where \(\mathbf{F} = \mathbf{F}(x, y, z) \) is a vector field and \(S \) is the surface.

(d) Consider the region \(D \) in the first octant defined by \(x^2 + y^2 + z^2 \leq a^2 \) and \(z \leq x + y \).

Let \(f(x, y, z) \) be a scalar function defined on \(D \).

(e) Evaluate the line integral
\[\oint_C f(x, y, z) \, ds \]

where \(C \) is a closed curve lying in the plane \(x + y + z = a \).
\[
\begin{align*}
\frac{3}{1} - \frac{3}{1} \cos \frac{3}{1} &= \\
\int_{0}^{1} \left[\frac{3}{1} - \frac{3}{1} \cos \frac{3}{1} \right] \, dy = \\
\end{align*}
\]
\(s(x, y) = \pi y - y^3, x = 0, y = 3\)

(a) Evaluate \(I\):

\[
I = \int_{0}^{1} \int_{0}^{3} s(x, y) \, dy = \frac{ax^2}{4} - \frac{ax}{2} + \frac{a}{4}
\]

Let \(L \in \mathbb{R}\) be a point in the plane that satisfies these integrals.

Problem 6

Sketch the corresponding region of integration in the plane, label your sketch sufficiently.
The temperature in the plane is given by $T(x,y) = y^2 + x^2 e^{-x}$. To find the warmest and coolest points on the circle $x^2 + y^2 = 1$, we must solve the following system of equations:

1. \[0 = \frac{\partial T}{\partial x} = 2x e^{-x} + 2x^2 e^{-x} \]
2. \[0 = \frac{\partial T}{\partial y} = 2y \]
3. \[0 = \frac{\partial^2 T}{\partial x^2} = 2e^{-x} + 2x^2 e^{-x} - x e^{-x} \]

The warmest point is $(0,0)$, and the coolest points are $(0,10)$ and $(0,-10)$.
\[\begin{align*}
\frac{\partial f}{\partial x} &= -f_x \\
\frac{\partial f}{\partial y} &= -f_y
\end{align*} \]

\[\Theta(x, y) = \Theta(x, y) \]

\[\frac{\partial \Theta}{\partial x} + \frac{\partial \Theta}{\partial y} = 0 \]

\[\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = 0 \]

Tips:
- (a) Fill blanks below in terms of functions depending on \(x \), \(y \), and \(\Theta \), and partial derivatives.
- (b) Let \(g(x, y) \) be another function satisfying \(\Theta \).

Suppose \(f(x, y) \) is twice differentiable (with \(\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \)) and \(x = r \cos \theta \) and \(y = r \sin \theta \).
(e) The coolest point on the solid disk $x^2 + y^2 \leq 100$ is $(0,0)$.

Tips (i) To find the critical points of $f(x,y)$ we must solve the following system:

\[
\begin{align*}
\frac{\partial f}{\partial x} &= x^2 + xy = 0 \\
\frac{\partial f}{\partial y} &= x^2 + y = 0
\end{align*}
\]

Take the same temperature function as in part (a).

Tips (ii) By solving the above system we conclude the critical points are:

$$ (0,0), (0, -2) $$

 questões

\[
\begin{align*}
\frac{\partial f}{\partial x} &= x^2 + xy = 0 \\
\frac{\partial f}{\partial y} &= x^2 + y = 0
\end{align*}
\]

Take the same temperature function as in part (a).
3. Consider the functions $F(x, y, z) = x^2 + y^2 z$ and $G(x, y, z) = 3x - y + 4z$. You are standing at the point $P(0, 1, 2)$. If you jump from P to $Q(0, 0, 1, 8)$, then the amount by which F changes is approximately 2:

$$\Delta F = (y_2 - y_1) + (z_2 - z_1) + 12(-2.4) = 3.4 - 2.4$$

(Use linear approximation.)

5 pts (a) If you jump from P to $Q(0,1,0,1,8)$, then the amount by which F changes is approximately:

$$\Delta F = (y_2 - y_1) + (z_2 - z_1) + 12(-2.4)$$

5 pts (b) If you jump from P in the direction along which G increases most rapidly, then G will increase/decrease (circle one and explain below).

$$\nabla G = \langle 3, 2, 4 \rangle$$

$$G(\mathbf{c}) = 3 \cdot a + 2 \cdot b + 4 \cdot c$$

5 pts (c) You jump from P in a direction (a, b, c), along which rate of change of F and G are both zero. An example of such a direction is $(a, b, c) = \langle 2, -2, -1 \rangle$ (not be unit vector).

$$V_{F}(P) \cdot V = 0 \Rightarrow 3 \cdot a + 2 \cdot b + 4 \cdot c = 0$$

$$V_{G}(P) \cdot V = 0 \Rightarrow 2 \cdot a - b + c = 0$$

$$\Rightarrow a = 4$$

$$b = 3a - 4c$$

$$\Rightarrow c = 1$$

$$\Rightarrow b = 8$$

$$V = \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}$$

$$\Rightarrow V = 12 - 4$$

could also use

$$V = \sqrt{v_{x}^{2} + v_{y}^{2} + v_{z}^{2}}$$

$$\Rightarrow V = 12 - 4$$
below choose the correct-proof.

(i) The first order partial derivative $f_x(x,y)$ is zero (chole one).
(ii) The second order partial derivative $f_{xx}(x,y)$ is positive (chole one).
(iii) Has a critical point at $(2,2)$.

For each statement, below choose those whose graphs intersect or cross with the hyperbolic paraboloid $z = x^2 - y^2$. The direction below shows those whose graphs intersect or cross with the hyperbolic paraboloid $z = x^2 - y^2$. None of the other choices. You may assume that a local maximum occurs at point I.

negative

negative

positive

positive

saddle point

saddle point

zero

zero

(explain the location where the surface intersects the x-axis; you would choose both x and y, but explain the location where the surface intersects the y-axis; you would choose both x and y, but...
1. Let \(A = (0, 2, 2), B = (2, 2, 2), C = (5, 2, 1) \).

(a) The line which contains \(A \) and is perpendicular to the triangle \(ABC \) has parametric equations:

\[
\begin{align*}
\mathbf{r} &= \mathbf{r}_0 + t\mathbf{v} \\
\mathbf{r} &= (0, 2, 2) + t(2, 0, -2) \\
\mathbf{r} &= (2t, 2, 2-2t)
\end{align*}
\]

(b) The set of all points \(P \) such that \(\overrightarrow{PA} \) is perpendicular to \(\overrightarrow{PB} \) form a Plane.

(c) A light source at the origin shines on triangle \(ABC \) making a shadow on the plane. If \(x + y + z = 32 \) (see diagram), then \(A = (0, 0, 0), B = (2, 2, 2), C = (5, 2, 1) \).

\[
\begin{align*}
&0 + 0 + z = 32 \\
&z = 32 \\
&\Rightarrow y + z = 32 \\
&y + 32 = 32 \\
&y = 0
\end{align*}
\]
\[0 = (1-z)(1-y)(1) + \frac{b}{x-z} + \frac{b}{x-y} \]

\[z = 1 \]

\[x = 2 \]

\[y = 1 \]

\[z = \frac{3 + e^2 + e^k + e^l}{2} \]

At the point (2,1,1),

\[0 = \frac{3 + e^2 + e^k + e^l}{2} \]

(c) Find the tangent plane to

\[\begin{cases}
1 - t &= z \\
1 + t &= y \\
1 &= x
\end{cases} \]

\[\begin{cases}
x &= 1 \\
y &= 2 \\
z &= 3
\end{cases} \]

(b) Find the parametric equation for the line of intersection of the planes

\[x = z - k - x \quad \text{and} \quad y = k + x + z \]

\[x = 1 \]

\[y = 1 \]

\[z = 1 \]

\[x = c - 1 \]

\[y = 3 - c \]

\[z = 2 \]

\[\frac{9 + b}{13 - c} \]

Distance from the above plane. Your answers should be in the following form: \(x + 2y - 4z = 0 \).

(a) Consider the plane \(x + 2y - 4z = 3 \). Find all parallel planes that are distance 2 from

[5]
<table>
<thead>
<tr>
<th>Question</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Student Conduct during Examinations

- Candidate must follow any additional examination rules or directions communicated by the examiner.
- Candidate must not disturb any candidate in the examination room.
- Candidate must not carry any objects into the examination room.
- Candidate must not move from the examination desk. Any communication material must be handed in at the conclusion of the examination.
- Candidate must not leave the examination room without permission from the examiner.
- Candidate must not damage or leave any examination material.
- Candidate must not copy or write down the questions or any part of the examination.
- Candidate must not use any electronic devices during the examination.
- Candidate must not exchange any materials with other candidates.
- Candidate must not communicate with other candidates who are listening to the examination.
- Candidate must not leave the examination desk without permission from the examiner.
- Candidate must not leave the examination room without permission from the examiner.

Student Instructions

- Show your work for all problems. No books, notes, or calculators are allowed. Show your work for all problems.

Student Details

- Student Number
- Signature
- First Name
- Last Name

Time

- 2:50 hours

Mathematics 200

- Exam Date: December 17, 2017
- The University of British Columbia
--- Some of 3c 2016.

\[e = \left(\frac{\partial F}{\partial y} \right)_T \]

\[0 = \left(\frac{\partial F}{\partial y} \right)_T \]

So that:

\[\frac{\partial F}{\partial y} \]

\[\text{see } 2016 \text{ Feb. } g = \text{just west } U \leq \text{g} \leq c \]

zero in this direction.

should the bee fly so that the rate of change of \(\frac{\partial F}{\partial y} \) and of \(S(x, y, z) \) are both

![Image](image-url)

Let \(S(x, y, z) = x + 2y \). A bee starts flying at \(P \); along which unit vector direction

\[5.5 = 5 + 1 + 0.6 \]

\[5 + 1 - (1 - 1) + 2(0) + 3(2) \]

\[\left(\begin{array}{c} 2 \frac{d(x)}{dt} + 0 \frac{d(t)}{dt} + 1 \frac{d(t)}{dt} \\ 1 \frac{d(t)}{dt} + 1 \frac{d(t)}{dt} + 1 \frac{d(t)}{dt} \end{array} \right) \]

(i) Use linear approximation of \(f \) at the point \(P \) to approximate \(f(1.9, 1.7, 1.2) \).

\[\frac{\Delta f}{\Delta t} = \frac{3}{3} \]

\[\frac{3}{3} \]

\[\left(\begin{array}{c} 2 \frac{d(x)}{dt} + 2 \frac{d(t)}{dt} \\ 1 \frac{d(t)}{dt} + 1 \frac{d(t)}{dt} \end{array} \right) \]

\[\text{in this direction?} \]

\[\text{And } \frac{\partial F}{\partial y} = 0, \text{ What is the rate of change of } \frac{\partial F}{\partial y} \text{ ?} \]

\[\text{At } P, \text{ the unit vector pointing towards the point} \]

\[(d) \frac{d}{dt} = 1, y \frac{d}{dt} = 2, \text{ and } (d) \frac{d}{dt} = 3 \text{.} \]

\[\text{A function } f \text{ at } P \]
\[A = -1 \]

\[\frac{d}{dx} f(x) = -w^t + \frac{d}{dx} = 0 \]

\[= \int (u \cdot x + v \cdot y) \]

\[= 13u \cdot x + 15u \cdot y \]

\[\Rightarrow w^t + u^t = 13u \cdot x + 15u \cdot y \]

\[w^t \cdot 0 + u^t \cdot 15u \cdot y \]

\[= 15u \cdot y \]

(b) Suppose \(u^t + w^t = 0 \). For what constant \(A \) will \(u^t = Aw^t \)?

\[\frac{d}{dx} (x^2 + 12x + 9) \]

\[= (2x + 12) \cdot 2 + (x^2 + 12x + 9) \cdot 3 \]

\[= 2x^2 + 12x + 9 \]

\[w^t = \frac{d}{dx} (x^2 + 12x + 9) \]

\[= 2x + 12 \]

\[\Rightarrow w^t = \frac{d}{dx} (x^2 + 12x + 9) \]

\[\Rightarrow \frac{d}{dx} (x^2 + 12x + 9) = 2x + 12 \]

(a) Find \(w^t \) in terms of \(u^t \) and \(v^t \). You can assume that \(w^t \) and \(v^t \) (you can assume that \(w^t \) and \(v^t \))

\[(x+y)^n = \frac{d}{dx} (x+y)^n \]

\[\Rightarrow \frac{d}{dx} (x+y)^n = (x+y)^n (\frac{d}{dx} x + \frac{d}{dx} y) \]

3. Let \(m(x) = (2x^3 - 3x^2 - 21) \) for some twice differentiable function \(n = x^2 \).
Find and classify the critical points of $f(x, y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 4$.

$f_x = 6xy - 6x = 0$

$f_y = 3x^2 + 3y^2 - 6y = 0$

$x = 0$ or $y = 0$

$y = 0$ or $y = 1$

Now apply 2nd Der Test to classify, use $D_{(0,0)} = f_{xx}f_{yy} - f_{xy}^2$.
5. Use Lagrange multipliers to find the minimum and maximum values of \((x + y)/e^x\), subject to \(y^2 + x^2 = 6\).

\[
\begin{align*}
\frac{\partial}{\partial x} (x^2 + y^2) &= 2x \\
\frac{\partial}{\partial y} (x^2 + y^2) &= 2y \\
\frac{\partial}{\partial \lambda} (x^2 + y^2) &= 0
\end{align*}
\]

\[
\begin{align*}
x &= 2 \\
y &= 2 \\
\lambda &= 1
\end{align*}
\]

\[
f((1, 2, 1)) = \left(\frac{2}{e^2}\right)^2 \text{ New Value}
\]

\[
f((-1, -2, -1)) = \left(\frac{-2}{e^2}\right)^2 \text{ New Value}
\]
(c) Compute the integral in the case \(f(x, y) = y^2 - x^2 \). Then express the integral as an iterated integral corresponding to the order \(dy \, dx \). Sketch \(D \).

\[\iint_D f(x, y) \, dx \, dy \]

(b) Express the integral as an iterated integral corresponding to the order \(dx \, dy \). Sketch \(D \).

[6] Consider the domain \(D \) above the \(x \)-axis and below parabola \(y = 1 - x^2 \) in the \(xy \)-plane.

Dec. 17, 2015
as three different iterated integrals corresponding to the orders of integration: (a) \(\int \int \int \) \\
(b) \(\int \int \int \) \\
(c) \(\int \int \int \) \\

Express the integral as the plane \(z = 1 \) below the plane \(z = \frac{1}{2} \) and above the plane \(z = \frac{1}{2} \).

\[\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} f(x, y, z) \, dz \, dy \, dx \]