the region \(R \) in \(\mathbb{R}^3 \) such that \(\{ (x,y,z) \mid y^2 + z^2 \leq \frac{1}{2} \} \) and above \(z = f(x,y) \). The volume \(V \) is

\[
V = \iiint_R f(x,y,z) \, dx \, dy \, dz
\]

Since

\[
\begin{align*}
\int_0^6 \left(\int_{y^2 + z^2 = \frac{1}{2}} \left(\int_0^{f(x,y)} \right) \, dx \right) \, dy &= \int_0^6 \left(\int_{y^2 + z^2 = \frac{1}{2}} \left(\int_0^{x^2y} \right) \, dx \right) \, dy \\
&= \int_0^6 \left(\int_{y^2 + z^2 = \frac{1}{2}} \left(\int_0^{x^2y} \right) \, dx \right) \, dy
\end{align*}
\]

*--- additional following to meaning of triple integrals

\(f(x,y) = 2 \)}
The diagram shows a projection of a 3D object onto the xy plane. The text seems to be discussing geometric properties, possibly involving coordinates and projections. However, the handwriting is not clear enough to transcribe accurately.
b) \[\iiint_E f(x,y,z) \, dV = \iiint_R f(x,y,z) \, dx
\begin{align*}
&\text{front face: } \\& \quad \int_0^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \sqrt{1-y^2} \\
&\text{back face: } \\& \quad \int_0^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} \sqrt{1-y^2} \\
&\text{projection onto } yz \text{ plane: }
\end{align*} \]
\[\int \int_{\Delta} dh \ dx \]

Explain why, as in the order \(dx \, dh \).

\[1 \leq z = \frac{h}{y} ; \ x = y ; \ y + z = 1 \]

\(x \geq 0 \) \(z \geq 0 \), \(x + y + z = 1 \)

(2) \(E \) is region bounded by planes
\[
\begin{align*}
1 & \leq y \leq 0 \\
2 & \leq x < 0 \\
3 & x \geq \frac{1-y}{2} \\
4 & 0 \leq z < 2 + h
\end{align*}
\]
For here E and F are face & E
\[E = x = h \]
\[E = \text{face of } E \]
\[F = \text{front face of } E \]
\[h \]
\[1 = h \]
\[2 \]
\[3 \]

\[\int_{-1}^{1} dxdy \]
\[\int_{-h}^{h} dxdy \]

\[\text{deep in from below} \]
\[\text{(add this inner year)} \]
\[\text{deepen in from below} \]
\[\text{and next let in orders} \]
\[\text{to deepen in from below} \]

(9) Repeat, but now add the plane $x = \frac{1}{2}$
Here... need 2 integrals.
Find volume of intersection of cylinders.

\[h = \frac{1}{2} \quad x = \frac{1}{2} \quad y = \frac{1}{2} \]

Sketch and cross-sectional sketch/adequate methods

\[\int \frac{1}{2} dA \]

Problem to xy plane is:

\[V = \iiint \frac{1}{2} \, dx \, dy \, dz \]
\[
\int_{x_1}^{x_2} f(x) \, dx = \int_{x_1}^{x_2} g(x) \, dx
\]

So by symmetry, get

\[
\int_{x_1}^{x_2} f(x) \, dx = \int_{x_1}^{x_2} g(x) \, dx
\]

...complete or useless sentence

Which is bigger?

What one type pattern future ever that?
\[
\begin{align*}
E &= \sqrt{y^2 - h^2} \\
&= \sqrt{8^2 - 2^2} \\
&= \sqrt{64 - 4} \\
&= \sqrt{60}
\end{align*}
\]

\(h \) is a test. 11
Center of Mass \(\bar{E} \):

- \(E \) have formulas on curves \((x, y, z)\).

\(f > 0 \) say.

Us a density function on \(E \), mass \(\rho(E) \), where \(\rho \) is a

Mass \(\rho(E) \), let's interpret

\(\langle \text{Average Value} \rangle \) on \(E \). \(\langle \text{vec}(E) \rangle \).

\(\langle \text{vec}(E) \rangle \). \(\langle \text{vec}(E) \rangle \).

As with double integrals, may interpret:

\[\int_{E} \text{mass} \, \text{d}E \text{ represents} \]

As with double integrals, may interpret:

\[\text{mass \, center of mass, average values} \]
\[\mu \left(\bigcup_{\gamma \in \Gamma} \gamma(\partial \Omega) \right) = \bigcup_{\gamma \in \Gamma} \mu \gamma(\partial \Omega) \]
Cylindrical coordinates:

\[r^2 = x^2 + y^2 \]

\[\text{Cylindrical coordinates: } (r, \theta, z) \]

In space:

\[(x, y, z) \]

\[\begin{align*}
 x &= r \cos \theta \\
 y &= r \sin \theta \\
 z &= z
\end{align*} \]
\(z = c \)
\(\Theta = c \)
\(x = c \)
The page contains handwritten mathematical content and diagrams. It appears to be a series of steps or a problem-solving process, possibly related to calculus or geometry. The handwriting is not very legible, but the symbols and structures suggest a discussion or derivation.
The limits are just identifying the face.

\[
\begin{align*}
0 \leq z & \leq R^2 \\
0 \leq \rho & \leq R \\
0 \leq \phi & \leq \pi/2
\end{align*}
\]

Sketch solid with volume:

In spherical polar \(\rho \) to get outer limits,

\[
\begin{align*}
\rho & \leq R \\
\phi & \leq \pi/2 \\
\theta & \leq \pi
\end{align*}
\]

May be easier to just think of projections.
Let \(L = \text{constant} \).

\[
L = \begin{cases}
0 & \text{if } \theta = 0 \\
1 & \text{if } \theta = \pi/2 \\
\cos \theta & \text{otherwise}
\end{cases}
\]

\[
\begin{align*}
1 &= \frac{1}{2} + \frac{1}{2} \\
0 &= \frac{1}{2} + 1 - \frac{1}{2} \\
x &= \frac{1}{2} \\
y &= \frac{1}{2} \\
z &= 0
\end{align*}
\]

\[
\begin{align*}
0 &= 2 \\
\Rightarrow
\end{align*}
\]

Calculate the volume bounded by cylinders \(\frac{x^2}{2} + \frac{y^2}{2} = 2 \times \), \(\frac{x^2}{2} + \frac{y^2}{2} = 2 \times \), \(\frac{x^2}{2} + \frac{y^2}{2} = 2 \times \).