Lect 21

proof of center of mass fmla (X formula:

\[\bar{x} = \frac{\int_{R} \int_{R} p(x,y) x \, dA}{\iint_{R} p(x,y) \, dA} \]

\[\bar{y} = \frac{\int_{R} \int_{R} p(x,y) y \, dA}{\iint_{R} p(x,y) \, dA} \]

1. n point masses \(m_1, m_2, \ldots \) at \(x_1, x_2, \ldots \) balances at:

\[\overline{x} = \frac{\sum_{i=1}^{n} x_i m_i}{\sum_{i=1}^{n} m_i} \]

Accept this.

2. mass distr on line "given by f(x)"

\[dm = f(x) \, dx \]

balances at:

\[\overline{x} = \frac{\int_{0}^{x} x \, dm}{\int_{0}^{x} dm} = \frac{\int_{0}^{x} x \cdot f(x) \, dx}{\int_{0}^{x} f(x) \, dx} \]

3. Lamina \(R \) in plane, "mass distributed by \(\rho(x,y) \)"

balances at:

\[\overline{x} = \frac{\iint_{R} x \rho(x,y) \, dA}{\iint_{R} \rho(x,y) \, dA} \]
Since:

\[dm = \int \rho(x,y) dy \, dx \]

"Collapse mass down to x-axis"
then apply (2); replace for with \(\int \rho(x,y) dy \)

TRIPLE INTEGRALS

Calculate these just as for double int.: successive antidiff:

\[\int_{x}^{5} \int_{y}^{2} \int_{z}^{1} xy \, dx \, dy \, dz \]

ex)

\[\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} xy \, dx \, dy \, dz \]
\[\begin{align*}
&= \int_{1}^{5} \int_{x}^{y} y \, dy \, dx \\
&= \int_{1}^{5} \left[y^2 \right]_{x}^{y} \, dx \\
&= \int_{1}^{5} (y^2 - x^2) \, dx \\
&= \left[\frac{y^3}{3} - \frac{x^3}{3} \right]_{1}^{5} \\
&= \frac{125}{3} - \frac{1}{3} \\
&= \frac{124}{3}
\end{align*} \]
will get a number as a result (a double int in y, z).

Def^n_{\text{Triple Integrals}}

A triple integral is expression of the form:

\[\int_a^b \int_{h_2(y)}^{h_1(y)} \int_{g_2(y,z)}^{g_1(y,z)} f(x,y,z) \, dx \, dy \, dz \]

and is calculated, as before, by iterated integration (Result is a number.)

* limits above indicate maximal allowable freedom to result in a number after calculating.

* may of course, consider "different orders of integration" dx dy dz, dy dx dz, ... etc.
there are six possible orders !, must then
adjust variable dependencies in limits accordingly.

\[\iiint_a^{b_2} f \, dy \, dx \, dz \]

Meaning of Triple Integral

As before, limits of \(z \) now represent a region, but now
in space; so we have \(\iiint_a^{b_2} g_2(x, u) h_2(u) \, dx \, du \)

\[\iiint_a^{b_1} f(x, u, z) \, dz \, dx \, du \]

limits describe region \(R \) below:
\[
\begin{align*}
g_1(x,y) &\leq z \leq g_2(x,y) \\
h_1(y) &\leq x \leq h_2(y) \\
a &\leq y \leq b
\end{align*}
\]

So \(R \) is region \{ below \(z = g_2(x,y) \) sitting directly above \(z = g_1(x,y) \) \} region \(D \) in \(xy \) plane.

Think of \(D \) as projection of \(R \) onto \(xy \) plane.
* Can no longer think of int as "volumes under graphs". However, other interpretations still valid: may think of
\[\iiint_{R} f \] as say, mass of region \(R \) with density function \(f(x,y,z) \).

This suggests

\[\int_{a}^{b} \int_{c}^{d} f(x,y,z) \, dx \, dy \, dz = \int_{c}^{d} \int_{a}^{b} f(x,y,z) \, dx \, dy \, dz = \ldots. \]

Provided limits of int all represent same region \(R \) in space.
Can also approximate triple integrals with Riemann sums as helme.

1. Partition R into n^3 subboxes.
2. Choose sample point x_{ijk} in each box, consider "mass" of this subbox.
 \[m = \frac{f(x_{ijk}) \cdot \Delta x \Delta y \Delta z}{n^3} \]
3. Add submasses:
 \[\sum \sum \sum_{k=1}^{n^3} \sum_{j=1}^{n^3} \sum_{i=1}^{n^3} f(x_{ijk}) \Delta x \Delta y \Delta z \]
Theorem (Fubini)

If \(f \) is continuous on \(R \), Riemann sums approach limit as \(n \to \infty \).

Limit equals result of calculating \(\iiint f \, dv \) by iterated integration.

(appplies to more general \(f \) and \(R \) also)

Properties of Triple Integrals:

Same as for double integrals.

1. \(\iiint (f + g) \, dv = \iiint f \, dv + \iiint g \, dv \)

 etc.
\[\iint_{R} \int_{0}^{z(x,y)} f(x,y,z) \, dz \, dy \, dx \]

\[\iiint_{V} f(x,y,z) \, dx \, dy \, dz \]

\[\iiint_{V} f(x,y,z) \, dV \]

\[\iiint_{V} f(x,y,z) \, dx
\]

\[\iiint_{V} f(x,y,z) \, dy
\]

\[\iiint_{V} f(x,y,z) \, dz \]

\[\iiint_{V} f(x,y,z) \, dV
\]

\[\iiint_{V} f(x,y) \, dx \]

\[\iiint_{V} f(x,y) \, dy
\]

\[\iiint_{V} f(x,y) \, dz \]

\[\iiint_{V} f(x) \, dx
\]

\[\iiint_{V} f(x) \, dy
\]

\[\iiint_{V} f(x) \, dz \]

\[\iiint_{V} f(y) \, dx
\]

\[\iiint_{V} f(y) \, dy
\]

\[\iiint_{V} f(y) \, dz \]

\[\iiint_{V} f(z) \, dx
\]

\[\iiint_{V} f(z) \, dy
\]

\[\iiint_{V} f(z) \, dz \]

\[\iiint_{V} f(x^2 + y^2) \, dx \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dx \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2) \, dV
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dx
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dy
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dz
\]

\[\iiint_{V} f(x^2 + y^2 + z^2) \, dV
\]
2013 W1 T2 6a)

\[
\begin{align*}
\text{a)} \quad & \int_{0}^{2} \int_{0}^{x} f \, dy \, dx + \int_{2}^{6} \int_{0}^{\sqrt{6-x}} f \, dy \, dx = \int_{0}^{2} \int_{0}^{6-y^2} f \, dx \, dy
\end{align*}
\]
\[\int \int_{0}^{\sqrt{4-y^2}} \ln \left(1 + x^2 + y^2 \right) \, dx \, dy \]

Note:

\[x^2 + 3y^2 = 4 - y^2 \]
\[\Rightarrow 4y^2 = 4 \]
\[\Rightarrow y = \pm 1 \]

So line intersects circle at height \(y = 1 \)

\[= \int_{0}^{\pi/2} \int_{0}^{2} \ln (1 + r^2) \, r \, dr \, d\theta \]

\[= \text{make subst. } u = 1 + r^2 \ldots \]