Lect 13

(a) Find eqn of tangent plane to surface:
\[2x^2 + y^2z = 3 \]
at \((1,1,1)\).

Method 1: Take \(z = F(x,y) \) implicitly defined.
Find \(F_x(1,1) \), \(F_y(1,1) \) by implicit diff.
Then use earlier eqn of tangent plane to graph of \(F \) at \((1,1,1)\).

Much quicker Method 2: Surface is \(f(x,y,z) = 2x^2 + y^2z = 3 \)
(level surface).
\[\nabla f \cdot \mathbf{n} = 0 \]
\[\text{Target plane has eqn } -2x + y - z = 0 \]
\[f_x(1,1,1)(x-1) + f_y(1,1,1)(y-1) + f_z(1,1,1)(z-1) = 0 \]

\[\Rightarrow (2x^3) \big|_{(1,1,1)} (x-1) + (2y^2) \big|_{(1,1,1)} (y-1) + (6xz^2 + y^2) \big|_{(1,1,1)} (z-1) = 0 \]

\[\Rightarrow 2(x-1) + 2(y-1) + 7(z-1) = 0 \]
Sketch Df at P, Q, R on diagram.

We used all properties of Df here:

- Df is perpendicular to level curve at P.
- $Df(P)$ points in dir of maximal rate of incr. of f at P.
- $||Df(P)||$ is the maximal rate of incr. of f at P.

(That's why $Df(R)$ is shortest...)
So why does $\nabla f(p)$ point perpendicular to the level surface (3 var) or curve (2 var) at p?

Illustration for $f(x, y)$ (2 var):

$\nabla f(x, y) = \mathbf{0}$; level curve of f

Start at p, move in dir \mathbf{u}.

\Rightarrow "like moving along level curve"

\Rightarrow f does not change along path

\Rightarrow $Df(p) = 0$

\Rightarrow $\nabla f(p) \cdot \mathbf{u} = 0$

ie) $\nabla f(p)$ perp to \mathbf{u}
(c) Find Point (Plan C) on \(x^2 + y^2 = 1 \) (Surface)

[circle and plane diagram]

Wait to solve.
\[\begin{align*}
0 &= a + t \\
0 &= b + 2bt \\
0 &= c + t \\
l &= a + b^2 + c
\end{align*} \]

Note:
\[\nabla f(a, b, c) = \langle 1, 2b, 1 \rangle \]
- Target plane at \(P; \)
\[(x-a) + 2b(y-b) + (z-c) = 0 \]

\((0, 0, 0) \) is on line through \(P \)
with \(\nabla f(0) = \langle 1, 2b, 1 \rangle \)

\((a, b, c)\) lie on surface.

\[\implies b = 0 \]
\[a = c = -t \]
\[\Rightarrow a = \frac{1}{2} \]
\[\frac{b}{2} = \frac{1}{2} \]

\[\begin{align*}
&b \neq 0 \\
t &= -\frac{1}{2} \\
a = \frac{1}{2}, \quad c = \frac{1}{2} \\
b &= 0
\end{align*} \]

\[\left(\frac{1}{2}, 0, \frac{1}{2} \right) \]
Optimization (an application of all we learned)

Relative Maxima & Minima (of 2 var functions):

Def: Let $f(x,y)$ be defined around some $p = (a, b)$

1) f has a relative max at p if:

 $f(q) \leq f(p)$ for all q in some disc around p

2) f has a relative min at p if:

 $f(q) \geq f(p)$
$f(x) = f(x, y)$

f has

- relative max at P ✓
- relative min at Q ✓
- neither rel. max/min at R ✓

(f has so-called "saddle" at R, formal definition coming soon)
If has rel. max at P in all cases, note however,

<table>
<thead>
<tr>
<th></th>
<th>a)</th>
<th>b)</th>
<th>c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_x(P)$</td>
<td>0</td>
<td>DNE</td>
<td>0</td>
</tr>
<tr>
<td>$f_y(P)$</td>
<td>0</td>
<td>DNE</td>
<td>DNE</td>
</tr>
</tbody>
</table>
Conversely, if \(f_x(p) \) or \(f_y(p) \) exists and is non-zero, then \(f \) cannot have a rel max or min at \(p \).

We call \(p \) a critical point of \(f \) if

\[
\begin{cases}
 f_x(p) = 0 \text{ or does not exist} \\
 f_y(p) = 0 \text{ or does not exist}
\end{cases}
\]

Theorem (1st derivative Test)

If \(f(x,y) \) has relative max or min at \(p \),

Then \(p \) is a critical pt. of \(f \).
So to locate rel max/min's, we first locate all critical pts. Then how do we tell if there is max or min at each?

Theorem (2nd derivative Test)

Assume $f(x,y)$ has critical pt. at $p = (a,b)$.

Assume f_{xx}, f_{xy}, f_{yy} are continuous around p.

Let

$$D(x,y) = (f_{xx}f_{yy} - (f_{xy})^2)$$

1. $D(p) > 0$; $f_{xx}(p) > 0$ \implies rel. min at p
2. $D(p) > 0$; $f_{xx}(p) < 0$ \implies rel. max at p
3. $D(p) < 0$; then f has "saddle" at p ; neither max/min

Note: $D(p) = 0$ \implies NO CONCLUSION! COULD STILL HAVE MAX/MIN at p.
1. Find critical pts.

2. Classify critical pts.

3. Find max/min

f(x,y) = x^2 + xy - y^2

\n
\begin{align*}
0 &= 2x + y \\
0 &= x + 2y \\
x &= x - 2y
\end{align*}

\begin{align*}
x &= 0 \\
y &= -x \\
x &= 0
\end{align*}

(0,0)
2. Use 2nd Der Test!

\[D(x,y) = f_{xx}f_{yy} - f_{xy}^2 \]

\[= (2)(-2) - (1)^2 \]

\[= -5 < 0 \]

So \(f \) has neither max nor min at \(P \), (has so called Saddle!)