Lect 12

* In prev. ex., does not make sense in (c), unless we restrict it to be unit vector.

\[Df(p) = A \cdot \frac{\partial f}{\partial \mathbf{u}} \]

(only fair to restrict to unit vectors in (c))

We can summarize findings conveniently in terms of the gradient vector.

*
Let \(f(x,y) \) be differentiable at \((a,b) = p\).

1. Define gradient of \(f \) at \(p \) as the vector
 \[
 \nabla f(p) = \langle f_x(p), f_y(p) \rangle
 \]

2. Then Direct Deriv. of \(f \) at \(p \), in the \(\vec{u} \) dir. is:
 \[
 D_{\vec{u}}f(p) = \nabla f(p) \cdot \vec{u}
 \]
 (Just same formula as before)

3. Maximum Value
 \[\frac{\partial}{\partial t} D_{\vec{u}}f(at, bt) \] occurs when
 \[\vec{u} = \frac{\nabla f(p)}{||\nabla f(p)||} \]
 \[
 \]
 Minimum Value
 \[\frac{\partial}{\partial t} D_{\vec{u}}f(at, bt) \] occurs when
 \[\vec{u} = -\frac{\nabla f(p)}{||\nabla f(p)||} \]
 (Assume \(\nabla f \neq 0 \))
Given \(f(x, y, z) \), \(\frac{df}{d\mathbf{v}} \) at \(p = (a, b, c) \), definitions are identical, just add another component where needed:

1. **Gradient of** \(f(x, y, z) \) **at** \(p \):
 \[
 \nabla f(p) = \langle f_x(p), f_y(p), f_z(p) \rangle
 \]

2. **Pit. Der.**
 \[
 D_{\mathbf{U}} f(p) = \nabla f(p) \cdot \mathbf{U}
 \]

3. Same set as before

\(\sum \)
\(f(0,0) = 0 \) (ii) find \(f\left(x, (0,0)\right) \)

\(\frac{2\pi}{11} = m \) (i) find \(f\left(x, (0,0)\right) \), \(f\left(\alpha, (0,0)\right) \)

\(f\left(\alpha, (0,0)\right) \)

\(\frac{2\pi}{11} = m \) (ii) find \(f\left(x, (0,0)\right) \)

\(a = -\frac{\sqrt{3}}{3} \)
A function $T(x, y) = \begin{cases} 1 & x = 1 \\ 2 & x = 2 \\ 3 & \text{otherwise} \end{cases}$.

Find $\nabla T(p)$ at $p(2, 1, 1)$.

So, $\nabla T(p) = (0, 1, 2)$.

Bee starts at P, flies along with the vector towards $Q(3, 2, 2)$. Rate of change of temp? (Bee feels)

\[\frac{\text{dx}}{\text{dt}} = T(2, 1, 1) \]
c) Let \(S(\mathbf{x}, y, z) = x + z \). Find \(\mathbf{D}_w S \) both ways.

Solution: want \(\mathbf{D}_w S = 0 \)
\[D(3, 4) = 0 \]
\[7S(p) = 0 \]
\[<a_0, b_0, c_0> = 0 \]
\[<1, 2, 3> \cdot <a_1, b_1, c_1> = 0 \]
\[<1, 0, 1> \cdot <a_2, b_2, c_2> = 0 \]
\[a + 2b + 3c = 0 \]
\[a + c = 0 \]
\[\text{let } c = t \]
\[a = -t \]
\[b = -3t + t = -2t \]
\[w = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \]
\[\cos \theta = \frac{1}{\sqrt{3}} \]
\[\theta = \frac{\pi}{3} \]
d) (extra) i) In what dir is T changing most rapidly at P?

ii) What is rate of change in this direction?

\[\nabla T(P) = \left< 1, 2, 3 \right> \]

\[\frac{1}{\sqrt{14}} \]

ii) \[\frac{\nabla T(P)}{||\nabla T(P)||} \cdot \left(\frac{\nabla T(P)}{||\nabla T(P)||} \right) = \frac{1}{||\nabla T(P)||} \]

\[= \frac{1}{\sqrt{14}} \]
Geometry & gradient vectors:

\[\nabla f \text{ tells us about geometry of level curves of } f \\
\text{(or level surfaces if } f \text{ has 3 vars)} \]

1. Given \(f(x,y) \) diff. at \(p(a,b) \). Then \(\nabla f(p) \) is perpendicular to level curve \(y = f \) at \(p \).
 (i.e. perp. to tangent line to level curve \(y = f \) at \(p \))

2. Given \(f(x,y,z) \) diff. at \(p(a,b,c) \). Then \(\nabla f(p) \) is perpendicular to level surface \(y = f \) at \(p \).
 (i.e. perp. to tangent plane to level surface \(y = f \) at \(p \))
1. Show what is meant:

\[\nabla f(p) \]

\[p = (a, b) \]

\[f(xy) = C \]

2. Target (sur)

\[f(xy, z) = \Delta \]

\[p = (a, b, c) \]

Target plane
In \mathbb{R}^3 we refer to "tangent plane to surface given by $f(x,y,z) = d$".

(but only defined tangent planes to graphs $z = F(x,y)$!)

However, may always think ∂:

at Q sum $\frac{\partial}{\partial z} z = F(x,y)$ defined implicitly by $f(x,y,z) = d$

at R sum

or $\frac{\partial}{\partial y} y = F(x,z)$

or $\frac{\partial}{\partial x} x = F(y,z)$
Is this same question as before?

Yes, I found it to be a triangle with

Base vectors: \((a,b,c)\)

Since plane equations: \(p(a,b,c)\)

\[
\begin{align*}
0 &= \frac{x}{p} + \frac{y}{(y-b)} + \frac{z}{(z-c)} \\
\end{align*}
\]

At \(P(a,b,c)\) this plane meets:

At \(P(a,b,c)\) the surface given by

\(f(x,y,z) = \text{a function of } x, y, z\)

Tangent plane to surface given by

And so, in particular:
Given graph \(Z = F(x, y) \)

Target plane at \((a, b, F(a, b))\) ?

Use (1) by:

\[
Z = F(x, y)
\]

\[
\Rightarrow f(x, y, z) = z - F(x, y) = 0
\]

\[
\Rightarrow \text{T. Plane to } f(x, y, z) = 0 \text{ has eqn:}
\]

\[
f_x(p)(x-a) + f_y(p)(y-b) + f_z(p)(z-F(a, b)) = 0
\]

\[
\Rightarrow -F_x(a, b)(x-a) - F_y(a, b)(y-b) + (z-F(a, b)) = 0
\]

\[
\Rightarrow Z = F(a, b) + F_x(a, b)(x-a) + F_y(a, b)(y-b)
\]

Same formula as before!