Lect 2.5

In an earlier example, \(\text{gg} = \text{gg} \).

Looks like:

\[\Gamma = 2 \cos \theta \]

\[(x-1)^2 + y^2 = 1 \]

\[r = 2 \cos \theta \]

\[0 = \frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{3\pi}{2} \]

Note:
Applications

Mass & Centers of Mass

Let D be a "lamina" in xy plane: a "material sheet" in plane

Suppose density over D is non-uniform, and given by a function

$$\rho(x, y) \geq 0 \text{ on } D$$
ie) then a little rect \(\int \int \rho \, dA \) at \((xy)\)

has mass

\[
dm = \rho(x,y) \, dA
\]

\[
= \rho(x,y) \, dx \, dy
\]

(so \(\rho(x,y) \) here is density at \((xy)\) and has units like \(g/cm^2\) in example)

\[\therefore \text{ Total Mass of } D\]

\[
m = \iiint_D dm = \iiint_D \rho(x,y) \, dA
\]

(just another interpretation of double integral)
Center of mass:

Let $D, p(x,y)$ be as before, define

\[
\begin{cases}
 M_y := \iint_D x \, p(x,y) \, dA \\
 M_x := \iint_D y \, p(x,y) \, dA
\end{cases}
\]

Then center of mass of D is:

\[
(\bar{x}, \bar{y}) = \left(\frac{M_y}{m}, \frac{M_x}{m} \right)
\]
Lamina balances at \((x, y)\), as shown.

We just "know" it is at \((0, 0)\).
--- to actually find this with formulae:

\[M_y = \iiint_D x \, d\mathbf{A} = \iiint_D x \, d\mathbf{A} = 0 \]

\[M_x = \iiint_D y \, d\mathbf{A} = 0 \]

Could actually do this.

Int. by iterated Int.

OR note: \(f(x,y) = x \)

is antisymmetric in \(x \)

\((\text{add})\) \(f(x,y) = -f(-x,y) \)

and \(D \) is symmetric about \(y \)-axis

\[\Rightarrow (\overline{x}, \overline{y}) = (0, 0) \]

as expected!
(d) Find center of mass \(\bar{y} \): \[x^2 + y^2 = 1 \] uniform density \(\rho = 1 \)

Intuitively, as observed before, see that

\[\bar{y} = 0 \]

But what about \(\bar{x} \)?
\[M_x = \iint_D y \, dA \]
\[= \int_0^1 \int_0^{\pi/3} r^2 \sin \theta \, dr \, d\theta \]
\[= \int_0^{\pi/3} \left[\frac{r^3}{3} \sin \theta \right]_0^1 \, d\theta \]
\[= \frac{1}{3} \left(-\cos \theta \right) \bigg|_0^{\pi/3} \]
\[= \frac{1}{3} (-\cos \frac{\pi}{3} + \cos 0) = \frac{2}{3} \]

\[\bar{y} = \frac{M_x}{m} = \frac{2/3}{\pi/2} = \frac{4}{3\pi} \]
Proof of center of mass formula:

Mass distributed along a line.

Mass is \(dm = \rho(x) dx \) at \(x \).

Continuous density \(\rho(x) \) at \(x \).

\[\text{balances at } x = \frac{\sum_{i=1}^{n} x_i m_i}{\sum_{i=1}^{n} m_i} \]

\[\text{balances at } x = \frac{\int x \rho(x) dx}{\int \rho(x) dx} = \frac{\int x \rho(x) dx}{m} \]
Continuous mass distribution in plane, density $\rho(x,y)$ at (x,y).

Strip has mass $\int \rho(x,y) \, dy \, dx$.

This 'balances at' $\int x(\int \rho(x,y) \, dy) \, dx = \int \int x \rho(x,y) \, dy \, dx = \frac{\int x \rho \, dA}{m}$.

10
--- can think of as saying, material sheet (lamina) balances on the line \(x = \frac{\int x \rho dA}{m} \)

\[y = \frac{\int y \rho dA}{m} \]

\[z \]

--- likewise, will also balance on line \(x = \frac{\int x \rho dA}{m} \)

--- so it balances at pt. (center of mass) \((\frac{\int x \rho dA}{m}, \frac{\int y \rho dA}{m}) \)!!
Lect 26

Surface Area

Given graph $z = f(x, y)$ over a region R.

$z = f(x, y)$
To find surface area \(S \) of this patch \(B \) of the graph, will do as follows:

1. Consider small patch at \((x, y) \in \mathbb{R} \) with dimensions \(dx \), \(dy \), \(dz \).

2. Think of small patch of surface directly above this small rect.
 It will be like parallelogram spanned by the two vectors

 \[
 \mathbf{A} = \langle dx, 0, 0 \rangle, \quad \mathbf{B} = \langle 0, dy, 0 \rangle.
 \]
The area of the small patch is:

\[dS = \left| \begin{array}{cccc}
\vec{i} & \vec{j} & \vec{k} \\
\partial x & 0 & f_x dx \\
0 & \partial y & f_y dy
\end{array} \right| \\
= \left\| \langle -f_x dx dy, -f_y dx dy, dx dy \rangle \right\| \\
= \sqrt{f_x^2 + f_y^2 + 1} \ d\partial x \partial y \\
\]

And so!! Surface Area of Whole Patch is:

\[\text{Area} = \iiint dS = \iint_R \sqrt{f_x^2 + f_y^2 + 1} \ dA \]
Calculate the volume of the solid.

\[
\frac{h}{2} - x = -\sqrt{1 - x^2 - y^2}
\]

\[
f(x) = \frac{h}{2} - \sqrt{1 - x^2 - y^2}
\]

\[
f_y = \frac{-y}{\sqrt{1 - x^2 - y^2}}
\]

\[
\int_{-\frac{h}{2}}^{\frac{h}{2}} \int_{0}^{\sqrt{1 - x^2}} f_x \, dy \, dx + \int_{-\frac{h}{2}}^{\frac{h}{2}} \int_{\sqrt{1 - x^2}}^{0} f_y \, dy \, dx
\]

The volume is 13.
--- DO THIS, use subst. \(\begin{align*}
u &= 1 - r^2 \\
\frac{du}{dr} &= -2r \\
\end{align*} \)

--- GET \(2\pi \) as answer.
SOME PAST FINAL (Double Int.)

\[\int_{0}^{1} \int_{0}^{x^2} x^3 \sin y^3 \, dy \, dx \]

2016

\[\int_{0}^{\sqrt{2}} \int_{0}^{x^2} x^3 \sin y^3 \, dx \, dy = \frac{1}{4} \int_{0}^{1} y^2 \sin y^3 \, dy \]

a) Sketch!

b) Calculate!
Region in plane above $x = \sqrt{3}$, below $y = 1 - x^2$

a) Sketch!

b) Write $\iint_R f(x,y) \, dA$ in orders $dx \, dy$, $dy \, dx$

\[
\int_{-1}^{\sqrt{1-y}} \int_{-\sqrt{1-y}}^{\sqrt{1-y}} f(x,y) \, dx \, dy + \int_{\sqrt{1-y}}^{1} \int_{0}^{\sqrt{1-x^2}} f(x,y) \, dy \, dx
\]

\[
\int_{0}^{\sqrt{1-y}} \int_{-\sqrt{1-y}}^{\sqrt{1-y}} f(x,y) \, dx \, dy + \int_{\sqrt{1-y}}^{1} \int_{0}^{\sqrt{1-x^2}} f(x,y) \, dy \, dx
\]

c) Find Int. when $f(x,y) = e^{x - x^{3/3}}$
\[\int_{-1}^{1} \int_{0}^{1-x^2} e^{x-x^{3/3}} \, dy \, dx \]

\[= \int_{-1}^{1} (1-x^3) e^{x-x^{3/3}} \, dx \]

\[= \int_{-2^{1/3}}^{2^{1/3}} e^u \, du \]

\[= e^u \bigg|_{-2^{1/3}}^{2^{1/3}} \]

\[= e^{2^{1/3}} - e^{-2^{1/3}} \]
Region bounded by $X=2 \quad \frac{1}{3} x^2 + y^2 = 16$ (smaller part)

$x=2$
$\Rightarrow r \cos \theta = 2$
$\Rightarrow r = \frac{2}{\cos \theta}$

\[
\iiint_R (x^2 + y^2)^{-3/2} = \iiint_{R} r^{-3} \cdot r \, dr \, d\theta
\]

\[
= \left[-r^{-1} \right]_{r=2/\cos \theta}^{r=r_{\pi/3}}
\]

\[
= \int_{\pi/3}^{\pi/3} \left(\frac{1}{4} + \frac{\cos \theta}{2} \right) \, d\theta
\]

\[
= \frac{\pi}{4} + \frac{\sin \theta}{2} \bigg|_{\theta=\pi/3}^{\theta=\pi/3} = \text{YOU FINISH...}
\]