Lect 15

ex) Find equation of tangent plane to surface \(2x^2 + y^2z = 3\) at pt \((1, 1, 1)\).

(Really mean \(z = f(x, y)\) implicit defined, and finding tangent plane to graph at \((1, 1, 1)\))

A: Must find \(Z_x, Z_y\). Can use formulae or "just do it" as:
\(\frac{x}{y} = \frac{1}{y} \)
Retelling the chain rule story...

Given \(z = f(x, y) \) and \(x(t) = x_0 \); \(x'(t) = a \) then
\[
y(t) = y_0 \quad y'(t) = b
\]

Chain rule says:
\[
\frac{dz}{dt} = f_x(p) \cdot a + f_y(p) \cdot b \quad (p = (x_0, y_0))
\]

We are going to re-express this with new notation and terminology.
Def

Given \(f(x,y) \) a pt. \(p \) in domain, and a vector \(\vec{V} = \langle a, b \rangle \)

1. **Define gradient vector** of \(f \) at \(p \) as:
 \[
 \nabla f(p) := \langle f_x(p), f_y(p) \rangle
 \]

2. **Define directional derivative** of \(f \) at \(p \) in dir. \(\vec{V} \) as
 \[
 D_{\vec{V}}f(p) := \nabla f(p) \cdot \vec{V} = f_x(p) \cdot a + f_y(p) \cdot b
 \]

* \(D_{\vec{V}}f(p) \) is rate of change of \(f \) at \(p \) in dir. \(\vec{V} \). (Note formula is just same as from chain rule!)

* Customary to require \(\vec{V} \) above to be unit vector to ensure fair comparison of different directions at \(p \)
Let \(f(x, y) = x^2 + y^3 \), \(p = (1, 1) \)

i) \(\nabla f\bigg|_{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})} = \langle 2, 3 \rangle \cdot \frac{1}{\sqrt{2}} \langle 1, 1 \rangle = \frac{5}{\sqrt{2}} \)

ii) \(\nabla f\bigg|_{\langle \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \rangle} = \langle 2, 3 \rangle \cdot \frac{1}{\sqrt{5}} \langle 2, 1 \rangle = \frac{7}{\sqrt{5}} \)

iii) Find \(\mathbf{v} \) (unit) so that \(\nabla f(p) = \mathbf{0} \)

\(\mathbf{v} = \langle a, b \rangle \) want \(\langle 2, 3 \rangle \cdot \langle a, b \rangle = 2a + 3b = 0 \)

\(\Rightarrow \mathbf{v} = \langle 3, 2 \rangle \) works! \(\frac{\mathbf{v}}{\sqrt{13}} \)

iv) Find \(\mathbf{v} \) (unit) so that \(\nabla f(p) \) is maximal

\(\mathbf{v} = \langle a, b \rangle \) \(\| \mathbf{v} \| = 1 \)

Want to make \(\langle 2, 3 \rangle \cdot \langle a, b \rangle \) as large as possible where \(a^2 + b^2 = 1 \)
\[\nabla f(p) \cdot \vec{v} \]
\[= \cos \theta \left(\| \nabla f(p) \| \cdot \| \vec{v} \| \right) \]
\[= \cos \theta \| \nabla f(p) \| \]

maximized when \(\cos \theta = 1 \)

1. \(\theta = 0 \)
2. \(\theta = \pi \)
3. \(\theta = \frac{\pi}{2} \)

\[\vec{v} = \frac{\nabla f(p)}{\| \nabla f(p) \|} \]

\(\vec{v} = \left\{ \frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \right\} \)
More on gradient vectors:

Theorem

Suppose \(\nabla f(p) \neq \mathbf{0} \). Then

1. \(\nabla f(p) \) is maximal (overall unit \(\mathbf{v} \)) when \(\mathbf{v} = \frac{\nabla f(p)}{\| \nabla f(p) \|} \)

and maximum value is \(\| \nabla f(p) \| \).

2. \(\nabla f(p) \) minimal

minimum value is \(\frac{\nabla f(p)}{\| \nabla f(p) \|} \)

\(\mathbf{v} = -\frac{\nabla f(p)}{\| \nabla f(p) \|} \).
2. \[\nabla f(p) \text{ perpendicular to level curve } f(x,y)=f(p) \text{ at } p \]

OR

\[\nabla f(p) \text{ normal to level surface } f(x,y,z)=f(p) \text{ at } p \]

In other words, tangent plane to a surface \[F(x,y,z)=c \] (c constant) at \(P=(a,b,c) \) is

\[f_x(p)(x-a)+f_y(p)(y-b)+f_z(p)(z-c)=0 \]
Thus both \(df \) and \(\text{length of } \partial f \) have important meaning rel. to \(f \).

We have already proved (1).

We can see (2) as follows (illustr.)

Let \(V \) be in tangent plane to level surface \(\partial F \) at \(P \).

\(\nabla F(P) \)
• starting at \(p \), then moving along \(\vec{V} \) is like moving on Surface.

\[\Rightarrow \nabla F(p) \cdot \vec{V} = 0 \]

\[\Rightarrow D_{\vec{V}} F(p) = 0 \]

• \(\nabla F(p) \) is normal for tangent plane!

Note: this gives now 2 ways of finding tangent plane to \(F(x,y,z) = c \) at \(P(a,b,c) \)
Mind I: use implicit diff to find
\[Z_x(\mathbf{a}, b), Z_y(\mathbf{a}, b) \]
then use formula
\[Z = C + Z_x(\mathbf{a}, b)(x-a) + Z_y(\mathbf{a}, b)(y-b) \]

Mind 2: just use formula

\[F_x(\mathbf{a}) (x-a) + F_y(\mathbf{a}) (y-b) + F_z(\mathbf{a}) (z-c) = 0 \]

Boole talks about following:

- Normal line to a surface at \(\mathbf{a} \) at \(\mathbf{P} \).
- Line through \(\mathbf{P} \), with \(\mathbf{P} \) normal to tangent plane.

Much Easier:
equation of tangent plane to

\[F(x, y, z) = \overbrace{z^3 x + z y + y^2}^{= 3} \]

at pt. (1, 1, 1)?

Method A

find \(\frac{\partial F}{\partial x}(1,1) \) and \(\frac{\partial F}{\partial y}(1,1) \) implicitly

Then use earlier formula for tangent plane
to graph

Method B

use formula we just learned

\[
\begin{align*}
F_x &= z^3 x = 1 \\
F_y &= z + 2y = 3 \\
F_z &= 3z^2 x + y = 4
\end{align*}
\]

= plane \(\overbrace{3}^{\circ} \)

\[1 \cdot (x - 1) + 3 \cdot (y - 1) + 4 \cdot (z - 1) = 0 \]
(1) equation of tangent plane to
\[z^2x + zy + y^2 = 3 \]
at \((1,1,1)\)?

\[F(x,y,z) \]

\[
\begin{align*}
F_x &= z^2 = 1 \\
F_y &= z + 2y = 3 \\
F_z &= 3z^2x + y = 4
\end{align*}
\]

\[(x-1) + 3(y-1) + 4(z-1) = 0 \] plane!
(Ex) on a past final, not yet posted.

Level curves of some f(x,y).
Sketch \(\nabla f \) at \(P, Q, R \).

Note: lengths of \(\nabla f \) above are different! (why?)
i) given at \(P(2,1,1) \):
\[
\begin{align*}
T(P) &= 5 \\
T_x(P) &= 1; T_y(P) = 2; T_z(P) = 3
\end{align*}
\]

Bee starts at \(P \), flies along unit vector towards \(Q(3,2,2) \). What rate of change of Temp does Bee experience?

ii) Let \(S(x,y,z) = x + 2z \).
Bee wants to fly along dir. which rate of change of \(T, S \) both zero. Find this dir. (unit)
\[D_{\mathbf{T}}(\mathbf{p}) = \mathbf{T}(\mathbf{p}) \cdot \left< \frac{1, 1, 1}{\sqrt{3}} \right> \]

\[= \frac{1+2+3}{\sqrt{3}} \]

\[= \frac{6}{\sqrt{3}} \]

\[\mathbf{T}(\mathbf{p}) = \left\{ \begin{array}{l}
\mathbf{D}_{\mathbf{T}}(\mathbf{p}) = 0 \\
\mathbf{D}_{\mathbf{S}}(\mathbf{p}) = 0
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
a + 2b + 3c = 0 \\
a + c = 0
\end{array} \right. \]

\[\mathbf{v} = \left< a, b, c \right> \]

\[\Rightarrow a = t \Rightarrow c = -t \]

\[b = t \]

So \[\mathbf{v} = \left< 1, 1, -1 \right> \text{ or } \left< -1, -1, 1 \right> \]

both work!

If asked for unit vector, give \[\left< 1, 1, -1 \right>/\sqrt{3} \]
2014 WTI 267 -- read problem --

\[P = (0,4,1) \]

\[\nabla F(p) \]

\[\nabla T(p) \]

Temperature vspace

\[T(x,y,z) = 5 + xy - z^2 \]

Surface: \[z^2 + xz + y^2 = 2 \]

ant wants to move in tangent plane to increase temp. most rapidly. find d\sigma !

(would be like dotted arrow in pic)

\[\text{it is the vector } \vec{\imath} \text{ in diagram !} \]
look! See!

\[\vec{v} = \nabla T(p) - \text{proj}_{\nabla F(p)} \nabla F(p) \]

Now just find \(\nabla T, \nabla F \) at \(p \),
and can divide above by it's length
if you want a unit vector.
Maxima & Minima

This section only deals with 2-variable functions $f(x,y)$. The main question here:

(l) Finding relative maxima, minima of $f(x,y)$:

We say that $f(x,y)$ has

- a relative max at (a,b) if $f(a,b) > f(x,y)$ for all (x,y) in some disc around (a,b)
- a relative min if $f(a,b) < f(x,y)$

(a,b)
a saddle at \((a,b)\) if it has neither rel max or min there.

\[z = f(x,y) \]

- f has rel max at P
- Saddle at R
- rel min at Q
- rel max at O
to find where \(f(x,y) \) has local (rel) extrema we apply

\[\text{1st Derivative Test:} \]

If \(f(x,y) \) has a rel max or min at \((a,b)\),
Then either

i) \[
\begin{align*}
 f_x(a,b) &= 0 \\
 f_y(a,b) &= 0
\end{align*}
\]

or

ii) one of \(f_x(a,b) \), \(f_y(a,b) \) undefined

\((ab)\) is called critical pt. if i) or ii) hold

\[* \] test would have located \(\Theta, P, Q \) in pic.

but also R, which is not max/min.
2nd Derivative Test:

Assume \(f(x,y) \) has critical pt. at \((a,b)=P\).
Assume 2nd partials of \(f \) continuous around \(P \).

Let
\[
D(x,y) := \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix} = (f_{xx}f_{yy} - f_{xy}^2)
\]

1. \(D(P) > 0 \) ; \(f_{xx}(P) > 0 \) \(\Rightarrow \) \(f \) has rel min at \(P \)
2. \(D(P) > 0 \) ; \(f_{xx}(P) < 0 \) \(\Rightarrow \) \(f \) has rel max at \(P \)
3. \(D(P) < 0 \) \(\Rightarrow \) \(f \) has saddle at \(P \)

(Test inconclusive if \(D(P) = 0 \))

* Note consistency of test with the model cases

\(f(x,y) = -x^2 - y^2 \) ; \(D(x,y) = \begin{vmatrix} -2 & 0 \\ 0 & -2 \end{vmatrix} \)
\(f(x,y) = x^2 + y^2 \) ; \(D(x,y) = \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} \)
\(f(x,y) = -x^2 + y^2 \) ; \(D(x,y) = \begin{vmatrix} -2 & 0 \\ 0 & 2 \end{vmatrix} \)
ex) Classify critical pts of

\[f(x, y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 4 \]

(ie: Find rel max & mins)

1. Find critical pts.

\[
\begin{align*}
 f_x &= 6xy - 6x = 0 \\
 f_y &= 3x^2 + 3y^2 - 6y = 0
\end{align*}
\]

\[6x(y - 1) = 0 \]

\[x = 0 \quad \text{or} \quad y = 1 \]

\[\begin{array}{c}
 x = 0 \\
 \rightarrow 3y^2 - 6y = 0 \\
 \rightarrow 3y(y - 2) = 0 \\
 y = 0, 2
\end{array} \]

\[\begin{array}{c}
 y = 1 \\
 \rightarrow 3x^2 + 3 - 6 = 0 \\
 \rightarrow x^2 = 1 = 0 \\
 \therefore \ x = \pm 1
\end{array} \]

4 critical pts

\[(1, 0), (0, 2), (-1, 0), (1, 1) \]
2. Use 2nd Der. Test

\[D = f_{xx} f_{yy} - f_{xy}^2 \]
\[= 6^2(y-1)^2 - (6x)^2 \]

<table>
<thead>
<tr>
<th>((0,0))</th>
<th>((0,2))</th>
<th>((1,1))</th>
<th>((-1,1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>36 > 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{xx})</td>
<td>-6 < 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Real max at \((0,0) \)

You do these ones!
7. Classify the critical points of

\[f(x, y) = x^2 + xy - 3y \]

\[f_x(x, y) = 2x + y - 3 \quad f_y(x, y) = x + 2y \]

\[f_{xx}(x, y) = 2, \quad f_{yy}(x, y) = 2 \]

(Note: \(f_{xy} \) is always defined.)

Now, could factor the top line: \(y(2x + y - 3) = 0 \)

or \(2x + y - 3 = 0 \)

so instead of solve...
alternately

\[x^2 - 3x = y^2 - 3y \]

\[(x - \frac{3}{2})^2 + \frac{9}{4} = (y - \frac{3}{2})^2 + \frac{9}{4} \]

\[x = y \quad \text{or} \quad x = -y + 3 \]

\[2x^2 + x^2 - 3x = 0 \]

\[3x^2 - 3x = 0 \]

\[x(x-1) = 0 \]

\[x = 0, 1 \]

\[(0,0), (1,1) \]

4 critical pt

\((0,3), (3,0) \)

(2) Now use 2nd Der. Test.
Why does 2nd Der. Test work?

Let \(f(x, y) \) have critical pt at \(P \).
Let \(C \) be a curve on graph of \(f \) through \((p, f(p))\). Let \(\vec{u} = \langle a, b \rangle \) be dir. vector of line "below \(C \).

1. \(\nabla \vec{u} \cdot \nabla f(p) = f_x(p) \cdot a + f_y(p) \cdot b = 0 \)

2. \(\nabla \vec{u} \cdot (\nabla f(p)) = \nabla \vec{u} \cdot (f_x \cdot a + f_y \cdot b) (p) \)

C has slope 0 over \(P \).
\[(D_u f)_a + (D_u f)_b = (f_{xx} a + f_{xy} b) a + (f_{xy} a + f_{yy} b) b = f_{xx} (a + f_{xy} b)^2 + b^2 \left(f_{xx} \left(f_{xy} f_{yy} - f_{xxy} \right) \right) \]

\[\text{In case 2 of 2nd Der. Test, above is } < 0 \text{ at } p \]

\[(D_u (D_u f))(p) < 0 \]

\[\Rightarrow \text{C has local max at } p \]

\[\Rightarrow \text{since } C \text{ was arbitrary, } f \text{ has local max at } p \]
(i) Maximize Vol of open-top box

make from 12 m² 86 card board.

\[2xz + 2yz + xy = 12\]

\[x, y > 0\]

\[\text{Vol} = xy^2\]

\[\text{eliminate } z\]

\[z = \frac{12 - xy}{2} \frac{2x^2y^2}{2(x+y)}\]

\[V(x,y) = \frac{12xy - x^2y}{2(x+y)}\]

\[\text{Maximize } V(x,y) \text{ over all } (x,y) \text{ so that } x, y > 0\]
Now we know $V(x, y)$ attains a max value in region above (by intuition and nature of problem). Thus this happens at a critical point! So we just need to locate critical points then compare V at these...

$$\begin{align*}
V_x &= \frac{y^2 (12 - 2xy - x^2)}{2(x+y)^2} \\
V_y &= \frac{x^2 (12 - 2xy - y^2)}{2(x+y)^2}
\end{align*}$$
\[
\begin{cases}
(12 - 2x) - (x^2 - 2) = 0 \\
(12 - 2y + 4) - (x^2 - 2) = 0
\end{cases}
\]

\[0 \geq x, \quad \text{and} \quad 0 \leq x \leq 12, \quad \text{and} \quad 0 \leq y \leq 12 \]

\[x^2 = y \quad \Rightarrow \quad x = y \]

Substitute, get

\[x = 2, \quad y = 2, \quad z = 1\]

Max U(x) is 2.2.1

This was only possible since we knew a Max

If \(U \) was obtained at a critical point, before hand!
Finding Max, Min of \(f(x,y) \) on closed & bounded sets

In prev. example, we knew (by geometry + intuition) that \(f(x,y) \) attained a max value on the set \(\partial D \) of \(x \geq y \) in the positive quadrant.

Q: given \(f(x,y) \) and some set \(D \) in \(\mathbb{R}^2 \), does \(f \) always attain a max, min on \(D \)?

A: not always! Even in prev. example, \(f \) does not attain a min in the positive quadrant under right conditions though, answer to Q is YES!
Theorem (Extreme Value Theorem)

Let \(f(x,y) \) be continuous on a closed and bounded domain \(D \subset \mathbb{R}^2 \). Then \(f \) attains a max and min value on \(D \).

* eg) Some closed & bounded sets:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Closed: contains boundary
- Bounded: contained in some disc
Thus we can locate max say, \(f(x,y) \) on closed bdd \(D \) by:

1. locate critical pts inside \(D \) and evaluate \(f \) at these pts.

2. determine max, min value of \(f \) on boundary of \(D \).

Then max of \(f \) on \(D \) is max of the values from 1, 2.

(think why)

Similar procedure for finding min of \(f \) on \(D \).