Math 253 HW1 2017 T1

You can draw some of these figures on the HW sheet itself. If you need more space, attach any additional written work.

Q1 Parallelograms in \(\mathbb{R}^3 \). (a) APEX 10.1 #8. (b) Also sketch and carefully label this object on a “cavalier oblique axis” (like the ones we use in lectures).

(c) Where is the center of the shape?

Q2 Vector arithmetic. [From APEX 10.2 #12.] Sketch the vectors \(\vec{u}, \vec{v}, \vec{u} + \vec{v}, \vec{u} - \vec{v} \) and \(2\vec{u} - \vec{v} \) on the same axes.
Q3 Romanticizing rejection. “There’s nothing romantic about rejection. It’s horrible.” – Marlon James

(a) In terms of the dot product, what is the vector projection of a vector \(\vec{a} \) onto a vector \(\vec{v} \)?

\[
\text{proj}_{\vec{v}} \vec{a} = \]

Now define the “vector rejection” of \(\vec{a} \) onto \(\vec{v} \) by

\[
\vec{w} = \vec{a} - \text{proj}_{\vec{v}} \vec{a} =
\]

(b) Sketch and label \(\text{proj}_{\vec{v}} \vec{a} \) and \(\vec{w} \) on the following figure:

(c) Show (prove) that \(\vec{w} \) is orthogonal to \(\vec{v} \).

(c) In two dimensions, now suppose \(\vec{v} = \left(\frac{1}{3} \right) \). Consider a triangle formed by the points \(A = (10, 20) \), \(B = (20, 10) \) and \(C = (0, 10) \). By considering each point as a vector \(a \) from the origin, compute the vector rejection onto \(\vec{v} \). Plot the resulting three points.
(d) Can you make a conjecture about what the vector rejection onto v does to any point in \mathbb{R}^2?

(e) Try computing $\vec{z} = \vec{a} - 2\text{proj}_v \vec{a}$ for each of the vertices of the triangle (again, taking these as \vec{a}). Plot those points. What does this new operation do to the triangle? Can you think of a good name for it?
Q4 Naughts and Crosses. [Adapted from the Stewart textbook.]

(a) Let $\vec{u} = (1, 2, 1)$. Find all vectors \vec{v} such that

$$\vec{u} \times \vec{v} = (3, 1, -5).$$

(b) Of all the answers to (a), which one has no component in the i direction?

(c) Are there any vectors \vec{w} such that $\vec{u} \times \vec{w} = (3, 1, 5)$? Justify your answer.