The following questions and problems came up naturally during class. They are not necessarily difficult but they should help understand the material from class.

(1) For a map $f : \mathcal{F} \to \mathcal{G}$ of sheaves show that $U \mapsto \ker(f(U))$ is a sheaf (and not just a presheaf).

(2) Write out what it means to be a subsheaf.

(3) If $i : p \to X$ is the inclusion of a point show that $i_* \mathcal{O}_p$ is the skyscraper sheaf supported at $p \in X$ (here \mathcal{O}_p is the structure sheaf of p).

(4) If $p \in X$ is a point then show that there exists a short exact sequence

$$0 \to \mathcal{I}_p \xrightarrow{i^*} \mathcal{O}_X \xrightarrow{\pi} \mathcal{O}_p \to 0$$

where \mathcal{I}_p is the ideal sheaf of p.

(5) Show that if $p, q \in \mathbb{P}^1$ are distinct points the natural map

$$\mathcal{O}_{\mathbb{P}^1} \xrightarrow{\langle \pi_1, \pi_2 \rangle} \mathcal{O}_p \oplus \mathcal{O}_q$$

is surjective, where π_1, π_2 are the natural surjective maps as in (1).

(6) Show that the global section functor Γ is left exact.

(7) If $f : X \to pt$ is the projection to a point show that $f_* = \Gamma$ where Γ is the global sections functor.

(8) If $f : X \to Y$ and \mathcal{G} is a sheaf on Y describe the natural adjunction map

$$\mathcal{G} \to f_* f^{-1} \mathcal{G}.$$

(9) Given sheaves \mathcal{F}, \mathcal{G} on X show that

$$U \mapsto \text{Hom}_U(\mathcal{F}|_U, \mathcal{G}|_U)$$

defines a sheaf (usually denoted $\mathcal{H}om(\mathcal{F}, \mathcal{G})$).

(10) Recall the extension by zero functor $j!$: namely, for an open $j : U \hookrightarrow X$ we define $j_!(\mathcal{F})$ as the sheafification of

$$V \mapsto \begin{cases} \mathcal{F}|_V & \text{if } V \subset U \\ 0 & \text{if } V \not\subset U \end{cases}$$

Show that there exists a short exact sequence

$$0 \to j_! j^{-1} \mathcal{F} \to \mathcal{F} \to i_* i^{-1} \mathcal{F} \to 0.$$

where $i : Y = X \setminus U \to X$. Note that $j^{-1} \mathcal{F}$ is just the restriction $\mathcal{F}|_U$ while the second (nontrivial) map above is the adjunction morphism.
(11) Show that a homogeneous polynomial \(f(x_0, x_1) \) of degree \(d \) carves out \(d \) points in \(\mathbb{P}^1 \) (counted with multiplicity).

(12) Show that \(\mathbb{C}^\times = \mathbb{C} \setminus \{0\} \) is an affine scheme.

(13) Show that \(X = \mathbb{C}^2 \setminus \{(0,0)\} \) is not an affine scheme. [You may use that \(X \) is not isomorphic to \(\mathbb{C}^2 \) topologically – which is clear since \(\mathbb{C}^2 \) is contractible whereas \(X \) is not.]

(14) What map of rings defines the inclusion of the point \((a_1, \ldots, a_n) \hookrightarrow \mathbb{A}^n\).

(15) Describe the glueing maps for the standard cover (discussed in class) by affines of \(\mathbb{P}^n \) [Hint: Recall the case \(n = 1 \) worked out as an example. In that case we had two copies of \(\mathbb{C} \) which are glued along \(\mathbb{C}^\times \) by the map \(z \mapsto z^{-1} \).]

(16) Identify the complement of the natural embedding \(\{x_n = 0\} = \mathbb{P}^{n-1} \subset \mathbb{P}^n \).

(17) Find an example of \(\mathcal{O}_X \)-modules \(\mathcal{F} \) and \(\mathcal{G} \) so that for open \(U \subset X \) the assignment
\[
U \mapsto \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U)
\]
defines a presheaf but not a sheaf.

(18) Show that for an inclusion \(i : Y \hookrightarrow X \) we have \(i^* i_* \mathcal{O}_Y \cong \mathcal{O}_Y \).

(19) If \(i : Y \hookrightarrow X = \text{Spec}(A) \) is a closed subscheme corresponding to an ideal \(I \subset A \) describe \(i_* \mathcal{O}_Y \) as \(\tilde{M} \) for an \(A \)-module \(M \).

(20) Is \(j_* \mathcal{O}_Y \) coherent where \(j : Y = \mathbb{C}^2 \setminus \{(0,0)\} \hookrightarrow \mathbb{C}^2 \)?

(21) Using the notation from (2), explain why \(j_!(\mathcal{O}_U) \) is not a quasi-coherent sheaf (in general).

(22) Consider an exact sequence of sheaves
\[
0 \rightarrow \mathcal{F}_1 \rightarrow \mathcal{F}_2 \rightarrow \mathcal{F}_3 \rightarrow 0
\]
on a scheme \(X \). Show that if \(\mathcal{F}_1 \) and \(\mathcal{F}_3 \) are quasi-coherent then so is \(\mathcal{F}_2 \). Hint: This is a local question. You can then use that \(\Gamma \) is exact to obtain an exact sequence of the form
\[
0 \rightarrow \mathcal{F}_1 \rightarrow \Gamma(\mathcal{F}_2) \rightarrow \mathcal{F}_3 \rightarrow 0.
\]

(23) Show that if \(U, V \subset X \) are open affine subschemes then \(U \cap V \) is also affine. Hint: consider the following fiber diagram
\[
\begin{array}{ccc}
U \cap V & \longrightarrow & U \times V \\
\downarrow & & \downarrow \\
X & \xrightarrow{\Delta} & X \times X
\end{array}
\]
where the vertical maps are inclusions and \(\Delta \) is the diagonal embedding. You may then use that a closed subscheme of an affine scheme is also affine.

(24) Find an example of a coherent sheaf \(\mathcal{F} \) on \(X \) such that \(f_*(\mathcal{F}) \) is not coherent (just quasi-coherent). Hint: think affine.

(25) Show that for an \(\mathcal{O}_X \)-module \(\mathcal{F} \) we have
\[
\text{Hom}_{\mathcal{O}_X}(\mathcal{O}_X, \mathcal{F}) \cong \Gamma(\mathcal{F}).
\]
(26) Suppose that \(i : X \to Y \) is a closed immersion and suppose \(F \) is a coherent \(\mathcal{O}_X \)-module. Show that \(i_* (F) \) is a coherent \(\mathcal{O}_Y \)-module (apriori it is just quasi-coherent).

(27) Show that a morphism of line bundles \(\mathbb{C}_X \to L \) (where \(\mathbb{C}_X \) is the trivial line bundle on \(X \)) is equivalent to a section \(s : X \to L \).

(28) Show that a line bundle \(L \) on \(X \) is trivial if and only if there exists a nonvanishing section \(s : X \to L \) (i.e. section where \(s(x) \neq 0 \) for all \(x \in X \)).

(29) If \(L \) is a line bundle show that there exists another line bundle \(L^{-1} \) such that \(L \otimes L^{-1} \cong \mathbb{C}_X \).

(30) Show that for an \(\mathcal{O}_X \)-module \(F \) we have

\[
\text{Hom}_{\mathcal{O}_X}(\mathcal{O}_X, F) \cong \Gamma(F)
\]

as vector spaces.

(31) If \(\Psi(V) \) denotes the coherent sheaf associated to a vector bundle \(V \) show that

\[
\Psi(V \otimes W) \cong \Psi(V) \otimes_{\mathcal{O}_X} \Psi(W).
\]

(32) Show that for a vector bundle \(V \) on \(Y \) and morphism \(f : X \to Y \) we have

\[
f^*(\Psi(V)) \cong \Psi(V \otimes_Y X)
\]

where \(V \otimes_Y X \) is the pullback (as a vector bundle) of \(V \) from \(Y \) to \(X \).

(33) Show that \(\Gamma(\mathcal{O}_{\mathbb{P}^1}(-1)) = 0 \).

(34) Compute \(\dim \Gamma(\mathcal{O}_{\mathbb{P}^n}(m)) \) for \(m \geq 0 \).

(35) If \(X \) is proper and \(\mathcal{L} \) a line bundle on \(X \) show that both \(\Gamma(\mathcal{L}) \neq 0 \) and \(\Gamma(\mathcal{L}^{-1}) \neq 0 \) if and only if \(\mathcal{L} \) is trivial. Hint: just need to use that \(\Gamma(\mathcal{O}_X) \cong \mathbb{C} \).

(36) Show that if

\[
0 \to F_1 \to F_2 \to F_3 \to 0
\]

is a short exact sequence of locally free sheaves then \(\det(F_3) \cong \det(F_1) \otimes \det(F_3) \).

(37) Describe the cokernel of the map \(x_k : \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^n}(1) \) of sheaves on \(\mathbb{P}^n \).

(38) Check that if \(s \in \Gamma(\mathcal{L}) \) then \(s^n \in \Gamma(\mathcal{L} \otimes \mathcal{L}^{-1}) \) where \(\mathcal{L} \) is a line bundle.

(39) Consider the map

\[
\phi : \mathbb{P}^1 \times \cdots \times \mathbb{P}^1 \to \mathbb{P}^r
\]

given by \(([x_1, y_1], \ldots, [x_r, y_r]) \mapsto [f_0, \ldots, f_r] \) where

\[
f_i = \sum_{e_1 + \cdots + e_r = i} \prod_j x_j^{1-e_j} y_j^{e_j}
\]

with \(0 \leq e_k \leq 1 \). For example, if \(r = 2 \) then \(\phi \) is given by

\[
([x_1, y_1], [x_2, y_2]) \mapsto [x_1 x_2, x_1 y_2 + x_2 y_1, y_1 y_2].
\]

(a) Show that \(\phi \) is well defined.

(b) Compute the number of points in \(\phi^{-1}(p) \) for a general point \(p \in \mathbb{P}^r \).
(c) (Harder) Show that
\[\phi^*(\mathcal{O}_{\mathbb{P}^n}(1)) \cong \bigotimes_{i=1}^n \mathcal{O}_{\mathbb{P}^1}(1). \]

(40) Show that a line bundle \(\mathcal{L} \) on \(X \) is generated by global section \(s_1, \ldots, s_n \in \Gamma(\mathcal{L}) \) if for any point \(p \in X \) there exists some \(s_i \) with \(s_i(p) \neq 0 \).

(41) Consider a morphism \(f : X \to Y \) of schemes and a line bundle \(\mathcal{L} \) on \(Y \). If sections \(\{ s_i \} \) generate \(\mathcal{L} \) show that \(\{ f^*s_i \} \) generate \(f^*\mathcal{L} \) on \(X \).

(42) Show that \(PGL_{n+1}(\mathbb{C}) \) acts faithfully on \(\mathbb{P}^n \).

(43) Show that all line bundles on \(\mathbb{P}^n \) are of the form \(\mathcal{O}_{\mathbb{P}^n}(\ell) \) for some \(\ell \in \mathbb{Z} \). [Hint: this requires thinking about the vanishing loci of sections.]

(44) Show that \(Aut(\mathbb{A}^n) \) is given by the group of affine transformations on \(\mathbb{A}^n \). Hint: use that \(Aut(\mathbb{P}^n) = PGL_n(\mathbb{C}) \) together with the fact that a birational map \(\phi : \mathbb{P}^n \to \mathbb{P}^n \) identifies line bundles on each side. This can be turned/expanded into a possible project.

(45) Consider a map \(B \to A \) of rings. This allows us to define
\[f : A \otimes_B A \to A \quad (a,a') \mapsto aa'. \]
Check that \(d : A \to \ker(f)/\ker(f)^2 \) given by \(a \mapsto a \otimes 1 - 1 \otimes a \) defines a \(B \)-derivation (i.e. \(d(aa') = ad(a') + a'd(a) \) and \(d(b) = 0 \) for \(b \in B \)).

(46) Show that \(\det(\mathcal{F}^\vee) \cong \det(\mathcal{F})^{-1} \) for any locally free sheaf \(\mathcal{F} \).

(47) For \(n \geq 1 \) we have \(\omega_{\mathbb{P}^n} \cong \mathcal{O}_{\mathbb{P}^n}(1) \) for some \(\ell \in \mathbb{Z} \). Find \(\ell \).

(48) If \(X \subset Y \) are smooth varieties \((X \neq Y) \) show that
\[\det(N_{X/Y}) = \omega_X \otimes \omega_Y^{-1}|_X. \]

(49) Consider a commutative diagram
\[
\begin{array}{ccc}
0 & \to & A & \to & B & \to & C & \to & 0 \\
\downarrow f & & \downarrow g & & \downarrow h & & & & \\
0 & \to & A' & \to & B' & \to & C' & \to & 0
\end{array}
\]
where the rows are exact, \(f \) is injective and \(g \) is an isomorphism. Show that \(h \) is surjective and that \(\text{coker}(f) \cong \text{ker}(h) \).

(50) Show from basic principles that \(\Omega_{X \times Y} \cong \pi_X^*\Omega_X \otimes_{\mathcal{O}_{X \times Y}} \pi_Y^*\Omega_Y \) where \(\pi_X \) and \(\pi_Y \) are the projections from \(X \times Y \) to \(X \) and \(Y \).

(51) Suppose \(X \subset Y \) are smooth varieties and that \(X \) is the zero locus of a section of a vector bundle \(\mathcal{V} \) whose rank is the codimension of \(X \) in \(Y \). Show that
\[\omega_X \cong \omega_Y|_X \otimes (\text{det} \mathcal{V})|_X. \]

(52) Suppose \(C \subset \mathbb{P}^2 \) is a smooth curve of degree \(d \). Find an \(\ell \in \mathbb{Z} \) and show that \(\omega_C \cong i^*(\mathcal{O}_{\mathbb{P}^2}(\ell)) \) where \(i : C \to \mathbb{P}^2 \) denotes the embedding.

(53) Find an example which illustrates why the homotopy category \(Kom(\mathcal{C}) \) of an abelian category \(\mathcal{C} \) is not necessarily abelian.
(54) Given an example of an abelian category \mathcal{C} and an object $A \in \mathcal{C}$ so that the functor $\text{Hom}(A, -)$ is not exact.

(55) Consider an exact sequence of sheaves $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$.

a) If \mathcal{F}_1 is flasque show that we have an exact sequence

$$0 \to \Gamma(\mathcal{F}_1) \to \Gamma(\mathcal{F}_2) \to \Gamma(\mathcal{F}_3) \to 0.$$

b) If \mathcal{F}_1 and \mathcal{F}_2 are both flasque show that \mathcal{F}_3 is also flasque.

(56) Give an example of a scheme X which is not affine but contains $f_1, \ldots, f_n \in \Gamma(\mathcal{O}_X)$ so that $U_i := \{ f_i \neq 0 \}$ are all open affine and $X = \cup_i U_i$.

(57) Calculate $\check{H}^*(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(m))$ for all $m \in \mathbb{Z}$ with respect to the standard cover $U_0 \cup U_1$ of \mathbb{P}^1.

(58) Show that $\check{H}^0(X, \mathcal{F}) \cong \Gamma(\mathcal{F})$ using any cover of X.

(59) If $\iota : U \to X$ is an open embedding and \mathcal{F} a sheaf on X then the natural map $\iota_* : \mathcal{F} \to \iota_* (\mathcal{F}|_U)$ becomes an isomorphism when restricted back to U.

(60) Consider $X = \mathbb{A}^2 \setminus (0, 0)$ where $\mathbb{A}^2 = \text{Spec} \mathbb{C}[x, y]$. Using an appropriate cover of X show that

$$\check{H}^1(X, \mathcal{O}_X) = \text{span}\{ x^i y^j : i, j < 0 \}.$$

In particular, this again shows that X is not affine.

(61) $X = \mathbb{A}^2 \setminus \{(0, 0)\}$ and consider the embedding $\iota : X \to \mathbb{A}^2$. Show that ι_* is not exact. Hint: consider the following exact sequence on X

$$0 \to \mathcal{O}_X \xrightarrow{(x, y)} \mathcal{O}_{\mathbb{P}^2}(-y, x) \xrightarrow{0} \mathcal{O}_X \to 0.$$

(62) Suppose X is projective and \mathcal{F} a coherent sheaf on X. Define the Euler characteristic as

$$\chi(\mathcal{F}) := \sum_{i \geq 0} (-1)^i \dim H^i(X, \mathcal{F}).$$

If $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ is an exact sequence show that $\chi(\mathcal{F}_1) - \chi(\mathcal{F}_2) + \chi(\mathcal{F}_3) = 0$.

(63) For a projective variety X and a coherent sheaf \mathcal{F} on it show that $\chi(\mathcal{F}(n))$ is a polynomial in n. Hint: one idea is to use the exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^r}(n) \to \mathcal{O}_{\mathbb{P}^r}(n + 1) \to \mathcal{O}_{\mathbb{P}^{r+1}}(n + 1) \to 0$$

tensor by \mathcal{F} and then use induction on the dimension but this is a bit tricky because tensoring is not exact. One solution is to consider the Euler characteristic of more general complexes \mathcal{F} (i.e. objects in the derived category) but this requires being a bit more comfortable with derived tensor products.

(64) Let $E \subset \mathbb{P}^2$ be a smooth curve of degree 3. Use the exact sequence

$$0 \to \mathcal{I}_E \to \mathcal{O}_{\mathbb{P}^2} \to \mathcal{O}_E \to 0$$

to compute $H^i(E, \mathcal{O}_E)$ for $i \geq 0$. Hint: $\mathcal{I}_E \cong \mathcal{O}_{\mathbb{P}^2}(-3)$.

(65) For E as above and $p \in E$ denote by \mathcal{I}_p the ideal sheaf of p (which is a line bundle). Compute $H^i(E, \mathcal{I}_p^\otimes n)$ for $n \in \mathbb{Z}$ and $i \geq 0$. Hint: use the computation of $H^i(E, \mathcal{O}_E)$ above and induction on n.

(66) For E as above show that $\mathcal{I}_p \not\cong \mathcal{I}_q$ if $p \neq q \in E$. Hint: Show that $H^0(E, \mathcal{I}_p \otimes \mathcal{I}_q') = 0$ if $p \neq q$.

(67) For E as above let $p \in E$ be some point and compute $H^i(E, \mathcal{O}_E(np))$ for $n \in \mathbb{Z}$ and $i \geq 0$. Hint: use the computation of $H^i(E, \mathcal{O}_E)$ above and induction on n.

(68) Compute $\mathcal{E}xt^i(\mathcal{O}_p, \mathcal{O}_p)$ for $p = [0, 0, 1] \in \mathbb{P}^2$. Hint: one has an exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^2}(-2) \to \mathcal{O}_{\mathbb{P}^2}(-1)^{\oplus 2} \to \mathcal{O}_{\mathbb{P}^2} \to \mathcal{O}_p \to 0$$

corresponding to the exact sequence of $\mathbb{C}[x, y]$-modules

$$0 \to \mathbb{C}[x, y] \xrightarrow{(x, y)} \mathbb{C}[x, y]^{\oplus 2} \xrightarrow{(y, -x)} \mathbb{C}[x, y] \to 0.$$

(69) Consider the origin $p \in \mathbb{A}^2 = \text{Spec} \mathbb{C}[x, y]$. Describe $\{p\} \in \mathbb{A}^2$ as carved out by a section of a vector bundle and check that the resulting Koszul resolution of \mathcal{O}_p is indeed exact. Hint: this is a complex we have seen before.