1. Let \(f(x, y, z) \) be a scalar function, and let \(\mathbf{F}(x, y, z) \) be a vector field. (Assume both \(f \) and \(\mathbf{F} \) have continuous partial derivatives of all orders.) Let \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) be vectors in \(\mathbb{R}^3 \).

(a) \(\text{curl} \ \text{grad} \ f = \mathbf{0} \).

Solution: True.

(b) \(\text{div} \ \text{grad} \ f = 0 \).

Solution: False. For example if \(f(x, y, z) = x^2 \), then \(\text{grad} \ f = (2x, 0, 0) \) and \(\text{div} \ \text{grad} \ f = 2 \).

(c) \(\text{div} \ \text{curl} \ \mathbf{F} = 0 \).

Solution: True.

(d) Let \(C \) be an oriented curve. The path integral of \(f \) along \(C \) does not change when the orientation of \(C \) is reversed.

Solution: True.

(e) Let \(C \) be an oriented curve. The line integral of \(\mathbf{F} \) along \(C \) does not change when the orientation of \(C \) is reversed.

Solution: False. The integral changes by a minus-sign.

(f) The expression \(\mathbf{u} \cdot \mathbf{v} \) is a vector.

Solution: False.

(g) The expression \(\mathbf{u} \times \mathbf{v} \) is a vector.

Solution: True.

(h) The expression \((\mathbf{v} \cdot \mathbf{w})\mathbf{u} \) is a vector.

Solution: True. First note that \((\mathbf{v} \cdot \mathbf{w}) \) is a scalar, so \((\mathbf{v} \cdot \mathbf{w})\mathbf{u} \) is the scalar product of the vector \(\mathbf{u} \) with the scalar \((\mathbf{v} \cdot \mathbf{w}) \).

(i) Let \(S \) be an oriented surface. The quantity \(\iint_S \mathbf{F} \cdot d\mathbf{S} \) is a vector.

Solution: False.

(j) Let \(S \) be an oriented surface. The quantity \(\iint_S f \, dS \) is a vector.

Solution: False.
2. Let \(\mathbf{F}(x, y, z) = \left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}, 0 \right) \).

(a) Show \(\text{curl } \mathbf{F} = (0, 0, 0) \).

(b) Let \(C \) be the unit circle in the \(xy \)-plane, oriented \textbf{clockwise}. Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{s} \).

(c) Using your answer from (b), explain why \(\mathbf{F} \) is not a gradient field, even though \(\text{curl } \mathbf{F} = (0, 0, 0) \).

Solution:

(a) This is a straight–forward computation:

\[
\text{curl } \mathbf{F} = \det \begin{pmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{-y}{x^2+y^2} & \frac{x}{x^2+y^2} & 0 \end{pmatrix} = -i \frac{\partial}{\partial x} \frac{x}{x^2+y^2} + j \frac{\partial}{\partial y} \frac{-y}{x^2+y^2} + k \left(\frac{\partial}{\partial x} \frac{x}{x^2+y^2} - \frac{\partial}{\partial y} \frac{-y}{x^2+y^2} \right) = k \left(\frac{x^2+y^2-2y^2}{(x^2+y^2)^2} + \frac{x^2+y^2-2y^2}{(x^2+y^2)^2} \right) = (0, 0, 0).
\]

(b) We first have to parametrize \(C \). We take \(\mathbf{c}(t) = (\cos(-t), \sin(-t)), t \in [0, 2\pi] \).

(note that we need the \(-t\) to ensure that we go clockwise). We then compute

\[
\int_C \mathbf{F} \cdot d\mathbf{s} = \int_{t=0}^{t=2\pi} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt = \int_{t=0}^{t=2\pi} (-\sin(-t), \cos(-t), 0) \cdot (\sin(-t), -\cos(-t), 0) dt = \int_{t=0}^{t=2\pi} -1 dt = -2\pi.
\]

(Note that one could also choose the usual clockwise parametrization \(\mathbf{c}(t) = (\cos(t), \sin(t)), t \in [0, 2\pi] \), and then changed the integral by a minus–sign.)

(c) If \(\mathbf{F} \) was a gradient field, then any line integral over a closed curve would be zero.

But in (b) we saw that this is not the case.

3. The surface \(S \) is parameterized by \(\Phi(u, v) = (e^u - 2, 2v + 3, 5 + u^2 + v^2) \) with \(u, v \in \mathbb{R} \).

(a) Determine the equation of the tangent plane to \((-1, 5, 6) \in S \).

(b) Find all points on \(S \) for which the tangent plane is parallel to the \(xy \)-plane.

Solution:
(a) We compute

\[\mathbf{T}_u = (e^u, 0, 2u) \]
\[\mathbf{T}_v = (0, 2, 2v) \]
\[\mathbf{T}_u \times \mathbf{T}_v = (-4u, -2ve^u, 2e^u). \]

Now now note that \(\Phi(u, v) = (-1, 5, 6) \) for \(u = 0, \) \(v = 1 \) (which can be seen by looking at the first two coordinates).

For \(u = 0, \) \(v = 1 \) we have

\[\mathbf{T}_u \times \mathbf{T}_v = (0, -2, 2). \]

This is the normal vector to the tangent plane at \((-1, 5, 6)\). The equation of the tangent plane is therefore given by

\[(x - (-1), y - 5, z - 6) \cdot (0, -2, 2) = 0 \]

which simplifies to

\[-2y + 2z - 2 = 0. \]

(b) First note that the tangent plane is parallel to the \(xy \)-plane if the \(z \)-components of \(\mathbf{T}_u \) and \(\mathbf{T}_v \) are zero. But this means that \(2u = 0 \) and \(2v = 0 \). So the only possibility is \(u = 0, v = 0 \). The corresponding point on \(S \) is \(\Phi(0, 0) = (-1, 3, 5) \).

4. Let \(f(x, y) = \frac{1}{3}x^3 + y\sqrt{2} + 3 \), and let \(D \) be the triangle with vertices \((0, 0)\), \((1, 0)\), and \((1, 1)\). Let \(S \) be the surface given by the graph of \(f(x, y) \) over \(D \).

(a) Find a parametrization of \(S \).

(b) Compute \(\int \int_S 4x^2 \, dS \).

Solution:

(a) The parametrization is given by

\[\Phi(x, y) = (x, y, \frac{1}{3}x^3 + y\sqrt{2} + 3) \]

where the domain for \(x, y \) is given by \(D \), i.e. by the triangle with vertices \((0, 0)\), \((1, 0)\), and \((1, 1)\).

(b) Let’s first compute \(\|\mathbf{T}_x \times \mathbf{T}_y\|:\)

\[\mathbf{T}_x = (1, 0, x^2) \]
\[\mathbf{T}_y = (0, 1, \sqrt{2}) \]
\[\mathbf{T}_x \times \mathbf{T}_y = (-x^2, -\sqrt{2}, 1) \]
\[\|\mathbf{T}_x \times \mathbf{T}_y\| = \sqrt{3 + x^4}. \]

We compute

\[\int \int_S 4x^2 \, dS = \int_{x=0}^{x=1} \int_{y=x}^{y=x} 4x^2 \sqrt{3 + x^4} \, dy \, dx = \int_{x=0}^{x=1} 4x^3 \sqrt{3 + x^4} \, dx. \]
Now let \(u = 3 + x^4 \) and we get
\[
\int_{x=0}^{x=1} 4x^3\sqrt{3 + x^4} \, dx = \int_{u=3}^{u=4} \sqrt{u} \, du = \left[\frac{2}{3} u^{3/2} \right]_{u=3}^{u=4} = \frac{2}{3} (4^{3/2} - 3^{3/2}).
\]

5. Consider the solid hemisphere formed by taking the portion of the unit ball with \(y \geq 0 \). Let \(S \) be the surface of this region (so that \(S \) is a hemisphere, together with a flat ‘base’ in the \(xz \)-plane). Find the flux of the vector field \(\mathbf{V}(x, y, z) = -z \mathbf{i} + \mathbf{j} + x \mathbf{k} \) out of the surface \(S \).

You may find the following identity useful: \(\sin^2 \alpha = \frac{1}{2} (1 - \cos 2\alpha) \).

Solution: We have to break this problem into two parts. We first integrate over the hemisphere, and then we integrate over the flat base.

For the hemisphere we take the parametrization
\[
\Phi(\theta, \phi) = (\cos(\theta) \sin(\phi), \sin(\theta) \sin(\phi), \cos(\phi))
\]
with \(\theta \in [0, \pi] \) and \(\phi \in [0, \pi] \). We compute
\[
\begin{align*}
\mathbf{T}_\theta &= (-\sin(\theta) \sin(\phi), \cos(\theta) \sin(\phi), 0) \\
\mathbf{T}_\phi &= (\cos(\theta) \cos(\phi), \sin(\theta) \cos(\phi), -\sin(\phi)) \\
\mathbf{T}_\theta \times \mathbf{T}_\phi &= (-\cos(\theta) \sin^2(\phi), -\sin(\theta) \sin^2(\phi), -\sin(\phi) \cos(\phi)) \\
&= -\sin(\phi) (\cos(\theta) \sin(\phi), \sin(\theta) \sin(\phi), \cos(\phi)).
\end{align*}
\]

Note that \(\mathbf{T}_\theta \times \mathbf{T}_\phi \) points inward (this can be seen by considering the last line and noticing that \(-\sin(\phi) \) is negative). So it has the wrong orientation. We can fix this by putting a minus–sign into the formula. So the flux through the hemisphere is given by
\[
\begin{align*}
&= -\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\pi} \mathbf{V}(\Phi(\theta, \phi)) \cdot (\mathbf{T}_\theta \times \mathbf{T}_\phi) \, d\phi d\theta \\
&= -\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\pi} (-\cos(\phi), 1, \cos(\theta) \sin(\phi)) \cdot (-\cos(\theta) \sin^2(\phi), -\sin(\theta) \sin^2(\phi), -\sin(\phi) \cos(\phi)) \, d\phi d\theta \\
&= -\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\pi} -\sin(\theta) \sin^2(\phi) \, d\phi d\theta \\
&= -\int_{\theta=0}^{\theta=\pi} \int_{\phi=0}^{\phi=\pi} -\frac{1}{2} \sin(\theta)(1 - \cos(2\phi)) \, d\phi d\theta \\
&= -\int_{\theta=0}^{\theta=\pi} \left[-\frac{1}{2} \sin(\theta)(\phi - \frac{1}{2} \sin(2\phi)) \right]_{\phi=0}^{\phi=\pi} \, d\theta \\
&= -\int_{\theta=0}^{\theta=\pi} -\frac{\pi}{2} \sin(\theta) \, d\theta \\
&= -\left[-\frac{\pi}{2} \cos(\theta) \right]_{\theta=0}^{\theta=\pi} \\
&= \pi.
\]

Another way to approach this part of the problem is to see that \(x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \) is the unit normal vector to the sphere at the point \((x, y, z)\). Thus \(\mathbf{V} \cdot \mathbf{n} = y \). To obtain the flux,
one integrates this (as a scalar surface integral) in spherical coordinates. (It is a little bit faster this way.)

Now let’s integrate over the base. The base lies in the xz–plane and the normal vector is $-\mathbf{j}$ (since outside is to the left), since the \mathbf{j}–component of \mathbf{V} is constant one, we see that the flux integral is just -1 times the area of the base, which equals $-\pi$.

To compute the flux over S we have to add up the results from the hemisphere and the base, and we get that the flux equals $\pi - \pi = 0$.

A more formal approach is to find a parametrization again. We could take

$$\Phi(r, \theta) = (r \cos(\theta), 0, r \sin(\theta))$$

where $r \in [0, 1]$ and $\theta \in [0, 2\pi]$. Then

$$T_r = (\cos(\theta), 0, \sin(\theta))$$

$$T_\theta = (-r \sin(\theta), 0, r \cos(\theta))$$

$$T_r \times T_\theta = (0, -r, 0).$$

This is the correct orientation, since $(0, -1, 0)$ points outside. So we have:

$$\int \int \mathbf{V} \cdot d\mathbf{S} = \int_{r=0}^{1} \int_{\theta=0}^{2\pi} \mathbf{V}(\Phi(r, \theta)) \cdot (T_r \times T_\theta) \, d\theta dr$$

$$= \int_{r=0}^{1} \int_{\theta=0}^{2\pi} (-r \sin(\theta), 1, r \cos(\theta)) \cdot (0, -r, 0) \, d\theta dr$$

$$= \int_{r=0}^{1} \int_{\theta=0}^{2\pi} -r \, d\theta dr = -\pi.$$

6. Let $\mathbf{c}(t) = (1, -t^2, \cos t)$, $0 \leq t \leq \pi$. Evaluate

$$\int_\mathbf{c} \sin z \, dx - y^2 \, dy + 3xz \, dz.$$

Solution: We compute

$$\int_\mathbf{c} \sin z \, dx - y^2 \, dy + 3xz \, dz = \int_{t=0}^{t=\pi} \sin(\cos(t)) \frac{d}{dt}(1) - (-t^2)^2 \frac{d}{dt}(-t^2) + 3 \cos(t) \frac{d}{dt}(\cos(t)) \, dt$$

$$= \int_{t=0}^{t=\pi} 2t^5 - 3 \cos(t) \sin(t) \, dt$$

$$= \left[\frac{t^6}{6} + \frac{1}{2} 3 \cos(t)^2 \right]_{t=0}^{t=\pi}$$

$$= \frac{\pi^6}{6}.$$