1. Find and classify all the critical points of

\[f(x, y) = \frac{1}{2}x^2 - xy + \frac{1}{3}y^3. \]

Solution: Since \(f \) is differentiable everywhere, the only critical points are the points where the gradient vanishes.

\[\nabla f(x, y) = (x - y, y^2 - x) = (0, 0) \]

precisely at the points \((0, 0)\) and \((1, 1)\). Note \(\frac{\partial^2 f}{\partial x^2} = 1, \frac{\partial^2 f}{\partial y \partial x} = -1, \) and \(\frac{\partial^2 f}{\partial y^2} = 2y. \) Apply the second derivative test:

<table>
<thead>
<tr>
<th>point</th>
<th>(\frac{\partial^2 f}{\partial x^2})</th>
<th>(D)</th>
<th>classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0))</td>
<td>1</td>
<td>-1</td>
<td>saddle</td>
</tr>
<tr>
<td>((1, 1))</td>
<td>1</td>
<td>1</td>
<td>strict local min</td>
</tr>
</tbody>
</table>

2. Let \(g(x, y) = 2e^{-x} \cos y. \)

(a) Find the quadratic Taylor polynomial for \(g(x, y) \) around the point \((0, 0)\).

\[
\begin{align*}
g(0, 0) &= 2 \\
\frac{\partial g}{\partial x} \bigg|_{(0, 0)} &= -2e^{-x} \cos y \bigg|_{(0, 0)} = -2 \\
\frac{\partial^2 g}{\partial x^2} \bigg|_{(0, 0)} &= 2e^{-x} \cos y \bigg|_{(0, 0)} = 2 \\
\frac{\partial^2 g}{\partial y \partial x} \bigg|_{(0, 0)} &= -2e^{-x} \sin y \bigg|_{(0, 0)} = 0 \\
\frac{\partial g}{\partial y} \bigg|_{(0, 0)} &= -2e^{-x} \sin y \bigg|_{(0, 0)} = 0 \\
\frac{\partial^2 g}{\partial y^2} \bigg|_{(0, 0)} &= -2e^{-x} \cos y \bigg|_{(0, 0)} = -2
\end{align*}
\]

So the quadratic Taylor polynomial for \(g(x, y) \) around \((0, 0)\) is

\[g(h_1, h_2) \approx 2 - 2h_1 + h_1^2 - h_2^2 \]

(b) Use your answer in part (a) to estimate \(2e^{-0.2} \cos 0.4. \)

\[We \ just \ evaluate \ g(0.2, 0.4) \approx 2 - 2(0.2) + (0.2)^2 - (0.4)^2 = 2 - .4 + .04 - .16 = 1.48. \]

\[(The \ actual \ value \ is \ approximately \ 1.508202). \]

3. A tank is in the shape of a half-cylinder of radius 2 and height 3. It is situated in \(\mathbb{R}^3 \), given by the inequalities \(\sqrt{x^2 + y^2} \leq 2, y \geq 0, \) and \(0 \leq z \leq 3. \) The temperature at the point \((x, y, z)\) is given by

\[T(x, y, z) = 2yz^2\sqrt{x^2 + y^2} \degree C. \]

Find the average temperature in the tank.
Solution: We describe the tank in cylindrical coordinates as \(0 \leq r \leq 2\), \(0 \leq \theta \leq \pi\), and \(0 \leq z \leq 3\). Recall the formula \([T]_{av} = \frac{\iiint_W T(x,y,z) \, dV}{\iiint_W \, dV}\).

We use cylindrical coordinates to compute

\[
\iiint_W T(x,y,z) \, dV = \int_0^3 \int_0^\pi \int_0^2 (r \sin \theta)(z^2)(r) \, r \, dr \, d\theta \, dz
\]

\[
= 2 \left(\int_0^3 z^2 \, dz \right) \left(\int_0^\pi \sin \theta \, d\theta \right) \left(\int_0^2 r^3 \, dr \right)
\]

\[
= 2(2)(4)(9) = 144
\]

The denominator (volume of region) is given by the formula \(\text{Vol}(W) = \frac{\pi 2^2 3^2}{2} = 6\pi\), or by computing

\[
\iiint_W \, dV = \int_0^3 \int_0^\pi \int_0^2 r \, dr \, d\theta \, dz = \left(\int_0^3 dz \right) \left(\int_0^\pi \, d\theta \right) \left(\int_0^2 r \, dr \right) = (3)(\pi)(2) = 6\pi
\]

Thus, \([T]_{av} = \frac{144}{6\pi} = \frac{24}{\pi} \circ C\).

4. Let \(T\) be the triangle with vertices \((0,0), (1,1)\) and \((0,1)\) and let \(f(x,y) = x\sin(y^3)\).

(a) Find the correct limits of integration to set up \(\iint_T f(x,y) \, dA\) as a double integral

\[
\iint_T f(x,y) \, dx \, dy.
\]

Solution: \(\int_0^1 \int_y^0 f(x,y) \, dx \, dy\).

(b) Find the correct limits of integration to set up \(\iint_T f(x,y) \, dA\) as a double integral

\[
\iint_T f(x,y) \, dy \, dx.
\]

Solution: \(\int_0^1 \int_x^1 f(x,y) \, dy \, dx\).

(c) Compute \(\iint_T f(x,y) \, dA\).

Solution: Use the set up from (a):

\[
\iint_T f(x,y) \, dA = \int_0^1 \int_0^y x\sin(y^3) \, dx \, dy
\]

\[
= \int_0^1 \left[\frac{\sin(y^3)}{2} \right]_0^y x \, dy
\]

\[
= \int_0^1 \frac{1}{2} y^2 \sin(y^3) \, dy
\]

\[
= \left[\frac{\cos(y^3)}{6} \right]_0^1
\]

\[
= 1 - \cos \frac{1}{6}
\]
5. Find the maximum and minimum values obtained by \(f(x, y) = x + y^2 \) on the ellipse \(x^2 + 3y^2 \leq 9 \).

Solution: First, find critical points in the interior \(x^2 + 3y^2 < 9 \). Note \(\nabla f(x, y) = (1, 2y) \) is never \((0, 0)\), so there are no critical points in the interior.

Second, find critical points on the boundary \(x^2 + 3y^2 = 9 \) using Lagrange Multipliers. Our constraint function is \(g(x, y) = x^2 + 3y^2 \). Solve \(\nabla f(x, y) = \lambda \nabla g(x, y) \), i.e. \((1, 2y) = \lambda (2x, 6y) \). The second coordinate gives two possibilities: \(y = 0 \) or \(\lambda = 1/3 \). If \(y = 0 \), then \(x = \pm 3 \) (from the constraint \(x^2 + 3y^2 = 9 \)). If \(\lambda = 1/3 \), then \(x = 3/2 \) (from \(1 = 2\lambda x \)), and the constraint gives \(y = \pm 3/2 \). There are four critical points to investigate: \((\pm 3, 0)\) and \((3/2, \pm 3/2)\).

<table>
<thead>
<tr>
<th>((x, y))</th>
<th>(f(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((3, 0))</td>
<td>3</td>
</tr>
<tr>
<td>((-3, 0))</td>
<td>-3</td>
</tr>
<tr>
<td>((3/2, 3/2))</td>
<td>15/4</td>
</tr>
<tr>
<td>((3/2, -3/2))</td>
<td>15/4</td>
</tr>
</tbody>
</table>

Thus the absolute maximum value of \(f \) on boundary is \(15/4 \), and the absolute minimum value on the boundary is \(-3\).

Since there are no critical points from the interior, these maximum and minimum boundary values are also the maximum and minimum values throughout the entire region.

6. The region \(S \) is cut from a solid ball of radius 1 centered at the origin. \(S \) is the region cut by the inequalities \(z \geq 0 \) and \(y \geq x \). \(S \) is one-quarter of the entire ball, and contains the point \((0, 1, 0)\).

The mass density of \(S \) at a point \((x, y, z)\) is given by the function \(\delta(x, y, z) = 30z^2 \text{ kg/m}^3 \).

(a) Find the total mass of \(S \).

Solution: The total mass is given by \(\iiint_S \delta(x, y, z) \, dV \). Note that \(S \) is described in spherical coordinates by \(0 \leq \rho \leq 1, \pi/4 \leq \theta \leq 5\pi/4, \) and \(0 \leq \phi \leq \pi/2 \). Thus

\[
\iiint_S \delta(x, y, z) \, dV = \int_0^{\pi/2} \int_{\pi/4}^{5\pi/4} \int_0^1 30(\rho \cos \phi)^2 \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi
\]

\[
= 30 \left(\int_0^{\pi/2} \cos^2 \phi \sin \phi \, d\phi \right) \left(\int_{\pi/4}^{5\pi/4} d\theta \right) \left(\int_0^1 \rho^4 \, d\rho \right)
\]

\[
= 30 \left(-\frac{\cos^3 \phi}{3} \right) \bigg|_{\pi/2}^{\pi/4} \left(\frac{1}{5} \right)
\]

\[
= 2\pi \text{ kg}
\]

(b) Find the average mass density of \(S \).

Solution: Average mass density is

\[
[\delta]_{av} = \frac{\iiint_S \delta(x, y, z) \, dV}{\iiint_S \, dV} = \frac{2\pi \text{ kg}}{\pi/3 \text{ m}^3} = \frac{2\pi \text{ kg}}{\pi/3 \text{ m}^3} = 6 \text{ kg/m}^3
\]