Math 211 Fall 2007: Solutions: HW #5
Instructor: S. Cautis

1. section 4.4, #12
 This problem is modeled by \(x'' + 36x = 0 \).
 The general solution is \(C_1 \cos(6t) + C_2 \sin(6t) \).
 \(C_1 = 0 \) and \(C_2 = \frac{4}{6} \)
 Period: \(\frac{2 \pi}{6} \) Amplitude: \(\frac{4}{6} \) Phase angle: \(\frac{\pi}{2} \)

2. section 4.4, #16
 The general solution to \(mx'' + kx = 0 \) is \(C_1 \cos(\sqrt{\frac{k}{m}}) + C_2 \sin(\sqrt{\frac{k}{m}}) \)
 \(C_1 = x_0 \) and \(C_2 = v_0 \sqrt{\frac{m}{k}} \)
 So the amplitude is \(\sqrt{x_0^2 + v_0^2 \frac{m}{k}} \).

3. section 4.5, #2
 Note that \(e^{-t} \) is not a solution to the homogeneous differential equation.
 Try \(y = ae^{-t} \). This gives \(ae^{-t}(1 - 6 + 8) = -3e^{-t} \).
 \(a = -1 \) and a solution is \(-e^{-t} \)

4. section 4.5, #4
 Note that \(e^{2t} \) is not a solution to the homogeneous differential equation.
 Try \(y = ae^{2t} \). This gives \(ae^{2t}(4 + 6 - 18) = 18e^{2t} \).
 \(a = -\frac{9}{4} \) and a solution is \(-\frac{9}{4}e^{2t} \)

5. section 4.5, #6 Note that \(\sin(2t) \) and \(\cos(2t) \) are not solutions to the homogeneous differential equation.
 Try \(y = a \cos(2t) + b \sin(2t) \). This gives \(-4a \cos(2t) - 4b \sin(2t) + 9a \cos(2t) + 9b \sin(2t) = \sin(2t) \).
 \(a = 0 \) and \(b = \frac{1}{5} \). A particular solution is \(\frac{\sin(2t)}{5} \).