Math 211
First Midterm
February 18, 2003

Make sure to show your work and justify your arguments.

Calculator policy: You may use calculators to evaluate standard functions on floating point numbers (like $\sqrt{3.12}$, ln(35/7), or sin(π/17)). You may not use symbolic operations, numerical integration, or any graphing functions.

1) Suppose that $y(t) = 2e^{-4t}$ is the solution of the initial value problem

$$y' + ky = 0, \quad y(0) = y_0.$$

What are the constants k and y_0? (14%)

Solution $y' + ky = -8e^{-4t} + 2ke^{-4t} = 0$, so $k = 4$. Also, $y_0 = y(0) = 2$.

2) Consider the differential equation

$$y' = \frac{1 + y}{t^3}.$$

a) Find the general solution. (9%)

b) Find a particular solution with $y(1) = 0$ and identify its interval of existence. (6%)

Solution Separable equation; separate the variables and integrate. We obtain

$$\ln(1 + y) = -\frac{1}{2}t^{-2} + C$$

which implies that the general solution is

$$y(t) = Ce^{-\frac{1}{2}t} - 1.$$

If $y(1) = 0$ we obtain that $C = e^{1/2}$ and the particular solution is

$$y(t) = e^{-\frac{1}{2}t} + \frac{1}{2} - 1.$$

The interval of existence is $(0, \infty)$.

3) Find a solution to the initial value problem

$$2y' + (\cos t)y = -3 \cos t, \quad y(0) = -4. \quad (14\%)$$

Solution This is a linear equation, divide by 2 both sides to get the normal form. The integrating factor is

$$e^\int \frac{\cos t}{2} dt = e^\frac{1}{2} \sin t.$$
We obtain that
\[(e^{\frac{1}{2} \sin t} y)' = -\frac{3}{2} e^{\frac{1}{2} \sin t} \cos t \]
which gives us
\[e^{\frac{1}{2} \sin t} y = -3e^{\frac{1}{2} \sin t} + C \]
and then
\[y(t) = Ce^{-\frac{1}{2} \sin t} - 3. \]
The initial condition gives \(C = -1 \) and the solution for the IVP is
\[y(t) = -e^{-\frac{1}{2} \sin t} - 3. \]

4) A tank originally contains 100 gal of fresh water. At time \(t = 0 \), a solution containing 0.2 lb of salt per gallon begins to flow into the tank at a rate of 3 gal/min and the well-stirred mixture flows out of the tank at the same rate.

(a) How much salt is in the tank after 10 min? (6%)

(b) Does the amount of salt approach a limiting value as time increases? If so, what is this limiting value? (6%)

Solution

The IVP is
\[S' = .6 - .03S, \quad S(0) = 0. \]

This is a separable equation, after integration we obtain that
\[S(t) = 20(1 - e^{-0.3t}). \]
Then \(S(10) = 5.1836 \) lb. The limit of \(S \) as \(t \to \infty \) is 20 lb.

5) A model for population growth is given by the equation
\[P' = rP \left(\frac{P}{\theta} - 1 \right) \left(1 - \frac{P}{K} \right), \]
where \(r, \theta \) and \(K \) are given positive constants and \(2\theta < K \).

(a) Sketch the graph of the function on the right hand side of this differential equation and identify the equilibrium points. (7%)

(b) Draw the phase line and analyze the stability near each equilibrium point. (7%)

(c) Consider the solution \(P(t) \) with initial value \(P(0) = K/2 \). Describe its behavior as \(t \to \infty \). Does it approach any of the equilibrium solutions? (7%)

Solution
The zeroes for the function are \(0, \theta \) and \(K \). Also, the leading coefficient of the cubic is a negative number, so the function is negative between \(0 \) and \(\theta \) and positive between \(\theta \) and \(K \). This means that \(0 \) and \(K \) are stable equilibriums
and θ is unstable. If we start a solution at \(K/2 > \theta \), the solution will converge to \(K \) in a monotone increasing way.

6) Can you conclude anything about the existence and uniqueness of the solution(s) of the initial value problem

\[
y' = \frac{1 + y}{t^3}, \quad y(1) = 0 \quad (10\%)
\]

Solution The right hand side of the equation and the partial derivative of the right hand side are both continuous in a small enough rectangle around the point \((1,0)\), so we have a unique solution for the IVP. (What we found in the second problem.)

7) Consider the initial value problem

\[
y' = \frac{y - 2}{\sin t - 2} \cos t, \quad y(0) = 1.
\]

Show that the solution \(y(t) \) of this initial value problem satisfies

\[
\sin t < y(t) < 2 \text{ for every } t. \quad (14\%)
\]

Solution \(2 \) and \(\sin t \) are solutions of the differential equation, the initial condition for our solution is between the values of these at the point \(t = 0 \), so by the uniqueness theorem \(\sin t < y(t) < 2 \) for all \(t \).