Some recommendations on using integration techniques

1. Substitution
 • A substitution \(u = g(x) \) works best, if the derivative \(g'(x) \) appears as part of the integrand (but there are exceptions).
 • A substitution can be used to use an integrand to a form which can be treated with other methods (e.g. one of the forms suitable for trigonometric substitution). Example: \(\int x^5 \sqrt{x^3 - 1} \, dx \).

2. Integration by Parts
 • If an integrand has two factors, which of them should one integrate and which one differentiate when using integration by part? As a rule: First choose log functions to differentiate. If no log functions are present, choose power functions.
 Examples: In \(\int xe^x \, dx \) choose \(u = x, \ dv = e^x \, dx \), while in \(\int x \ln x \, dx \) choose \(u = \ln x, \ dv = x \, dx \) (it would not be good to choose \(u = x, \ dv = \ln x \, dx \) here).
 • In integrals of the form \(\int e^x \sin x \, dx \) choose \(u = \sin x \) and \(dv = e^x \, dx \), do two integrations by part and then solve for the unknown integral.
 • Example: \(\int xe^x \sin x \, dx \). Start by finding \(\int e^x \sin x \, dx \) and then choose \(u = x, \ dv = e^x \sin x \, dx \) to integrate the original integral by parts.

3. Trigonometric Integrals
 • Integrals of the form \(\int \sin^m x \cos^n x \, dx \):
 If \(m \) or \(n \) are odd, then use \(\sin^2 x + \cos^2 x = 1 \) on one of the odd-powered terms and then substitute \(u = \sin x \) or \(u = \cos x \).
 Example: \(\int \sin^5 x \cos^4 x \, dx = \int (1 - \cos^2 x)^2 \sin x \cos^3 x \, dx \). Substitute \(u = \cos x \).
 If \(m \) and \(n \) are both odd, then reduce the integrand to odd powered sines or cosines by using half-angle identities.
Integrals of the form $\int \tan^m x \sec^n x \, dx$:
If m is odd, use the identity $\tan^2 x = \sec^2 x - 1$ to replace all but one of the tangent factors by secants, then substitute $u = \sec x$. If n is even, use $\sec^2 x = 1 + \tan^2 x$ and substitute $u = \tan x$.
Example: $\int \tan^3 x \sec^3 x \, dx = \int (\sec^2 x - 1) \sec^2 x \sec x \tan x \, dx = \int (u^4 - u^2) \, du$.

4. Partial Fractions

- If necessary, start by long division to turn an improper rational function into a proper rational function.
- Factor the denominator. If the denominator can be fully factored, use a “standard” partial fraction decomposition. If the denominator contains irreducible quadratic factors, then other methods have to be used (completing the square, substitution to reduce to simpler forms of the denominator, e.g. $x^2 + 1$, splitting numerator)

5. Trigonometric Substitutions

- All three types of trigonometric substitutions are based on trying to exploit $1 - \sin^2 x = \cos^2 x$ and its two consequences $\tan^2 x = \sec^2 x - 1$ and $\sec^2 x = 1 + \tan^2 x$. These identities directly suggest the proper substitutions to simplify expressions involving the terms $a^2 - x^2$, $a^2 + x^2$ or $x^2 - a^2$.
- Example: $\int \sqrt{2x - x^2} \, dx$.

6. Improper Integrals

- Start by splitting an improper integral by splitting it at all singularities, meaning at $+\infty$, $-\infty$ and all discontinuities of the integrand. Treat each term separately as an improper integral.
- When evaluating an improper integral, first find the indefinite integral in a calculation on the side. Then insert the antiderivative found into the correct boundaries for the improper integral. Do not try to directly substitute integration boundaries in an improper integral.
- Example: $\int_0^\infty \frac{1}{x^{1/2} + x^{3/2}} \, dx$.