Math 101 Fall 2004 Exam 2 Solutions
Instructor: Jennifer Wightman/Richard Stong
Tuesday, November 16, 2004

Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. You have one hour and fifteen minutes. Do all 7 problems. Please do all your work on the paper provided. You must show your work to receive full credit on a problem. An answer with no supporting work will receive no credit.

Please print your name clearly here.

Print name: ________________________________

Upon finishing please sign the pledge below:
On my honor I have neither given nor received any aid on this exam.

Grader’s use only:

1. _______ /10
2. _______ /10
3. _______/25
4. _______ /10
5. _______ /15
6. _______ /20
1. [10 points] Compute the first three derivatives of the following function.

\[f(t) = (t^2 + 3t) \ln (t^2 + 3t) \]

\[f'(t) = (2t+3) \ln (t^2 + 3t) + (t^2 + 3t) \frac {2t + 3}{t^2 + 3t} = (2t+3) \ln (t^2 + 3t) + 2t + 3. \]

\[f''(t) = 2 \ln(t^2 + 3t) + (2t+3) \frac {2t + 3}{t^2 + 3t} + 2 = 2 \ln(t^2 + 3t) + \frac {(2t+3)^2}{t^2 + 3t} + 2. \]

\[f'''(t) = \frac {4}{t^2 + 3t} + \frac {4(2t + 3)(t^2 + 3t) - (2t + 3)^2 \cdot (2t + 3)}{(t^2 + 3t)^2} \]

\[= \frac {2(2t + 3)}{t^2 + 3t} - \frac {9(2t + 3)}{(t^2 + 3t)^2}. \]
2. [10 points] Evaluate the following limits, if they exist.

(a) \(\lim_{t \to 0} \frac{1 - \cos 3t}{t \sin t} \)

This limit is indeterminate of type 0/0 so applying L'Hôpital (twice) gives

\[
\lim_{t \to 0} \frac{1 - \cos 3t}{t \sin t} = \lim_{t \to 0} \frac{3 \sin 3t}{\sin t + t \cos t} = \lim_{t \to 0} \frac{9 \cos 3t}{2 \cos t - t \sin t} = \frac{9}{2}
\]

(b) \(\lim_{x \to 0} (1 - 3x)^{1/(2x)} \)

This limit is indeterminate of type 1\(^\infty\) so rearranging and using L'Hôpital gives

\[
\lim_{x \to 0} (1 - 3x)^{1/(2x)} = \lim_{x \to 0} \exp \left(\frac{\ln(1 - 3x)}{2x} \right) = \exp \left(\lim_{x \to 0} \frac{\ln(1 - 3x)}{2x} \right)
\]

\[
= \exp \left(\lim_{x \to 0} \frac{-3}{2} \right) = \exp(-3/2) = e^{-3/2}
\]
3. [25 points] Evaluate the following integrals:

(a) $\int (e^t + 1)^2 \, dt$

$$\int (e^t + 1)^2 \, dt = \int (e^{2t} + 2e^t + 1) \, dt = \frac{1}{2} e^{2t} + 2e^t + t + C.$$

(b) $\int x^2 \sec^2 (x^3 + 1) \, dx$

Substituting $u = x^3 + 1$ so $du = 3x^2 \, dx$ gives

$$\int x^2 \sec^2 (x^3 + 1) \, dx = \frac{1}{3} \int \sec^2 u \, du = \frac{\tan u}{3} + C = \frac{\tan (x^3 + 1)}{3} + C.$$

(c) $\int \sin^5 3z \cos 3z \, dz$

Substituting $u = \sin(3z)$, $du = 3\cos(3z) \, dz$ gives

$$\int \sin^5 3z \cos 3z \, dz = \frac{1}{3} \int u^5 \, du = \frac{1}{18} u^6 + C = \frac{1}{18} \sin^6(3z) + C.$$

(d) $\int_0^1 x(2 - x^2)^3 \, dx$

Substituting $u = 2 - x^2$, so $du = -2x \, dx$ and $x = 0$ means $u = 2$, $x = 1$ means $u = 1$ gives

$$\int_0^1 x(2 - x^2)^3 \, dx = -\frac{1}{2} \int_2^1 u^3 \, du = \frac{1}{2} \int_1^2 u^3 \, du = \frac{1}{8} u^4 \bigg|_1^2 = 2 - \frac{1}{8} = \frac{15}{8}.$$

(e) $\int_0^{\pi/2} e^{\sin x} \cos x \, dx$

Substituting $u = \sin x$, so $du = \cos x \, dx$ and $x = 0$ means $u = 0$, $x = \pi/2$ means $u = 1$ gives

$$\int_0^{\pi/2} e^{\sin x} \cos x \, dx = \int_0^1 e^u \, du = e^u \bigg|_0^1 = e - 1.$$
4. [10 points] Evaluate the definite integral below directly from the definition. That is, compute \(\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x \) for a regular partition of the given interval of integration.

\[
\int_{0}^{3} (3x^2 + 1) \, dx
\]

The following formulas may be helpful

\[
\sum_{i=1}^{n} 1 = n, \quad \sum_{i=1}^{n} i = \frac{1}{2} n^2 + \frac{1}{2} n, \quad \sum_{i=1}^{n} i^2 = \frac{1}{3} n^3 + \frac{1}{2} n^2 + \frac{1}{6} n.
\]

Since \(a = 0, b = 3 \) and \(f(x) = 3x^2 + 1 \) we have \(\Delta x = (b - a)/n = 3/n \) and \(x_i = a + i \Delta x = 3i/n \). Hence

\[
\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} \left(3 \left(\frac{3i}{n} \right)^2 + 1 \right) \frac{3}{n} = \sum_{i=1}^{n} \left(\frac{81i^2}{n^3} + \frac{3}{n} \right)
\]

\[
= \frac{81}{n^3} \sum_{i=1}^{n} i^2 + \frac{3}{n} \sum_{i=1}^{n} 1 = \frac{81}{n^3} \left(\frac{1}{3} n^3 + \frac{1}{2} n^2 + \frac{1}{6} n \right) + \frac{3}{n}
\]

\[
= 27 + \frac{81}{2n} + \frac{27}{2n^2} + 3 = 30 + \frac{81}{2n} + \frac{27}{2n^2}.
\]

Hence

\[
\int_{0}^{3} (3x^2 + 1) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x = \lim_{n \to \infty} \left(30 + \frac{81}{2n} + \frac{27}{2n^2} \right) = 30.
\]
5. [10 points] Find the area of the region in the plane bounded by
\[y = x^3 - 3x^2 + 2x \quad \text{and} \quad y = 2x. \]

The two curves intersect when \(y = x^3 - 3x^2 + 2x = 2x \), hence \(x^3 = 3x^2 \), so \(x = 0 \) or \(x = 3 \). Plugging in \(x = 1 \), we get \(y = 0 \) for the cubic and \(y = 2 \) for the line. Hence the line is higher and the region is below \(y = 2x = f(x) \), above \(y = x^3 - 3x^2 + 2x = g(x) \) between \(x = 0 = a \) and \(x = 3 = b \). So

\[
A = \int_{a}^{b} (f(x) - g(x)) \, dx = \int_{0}^{3} (2x - (x^3 - 3x^2 + 2x)) \, dx
\]

\[
= \int_{0}^{3} (3x^2 - x^3) \, dx = \left[x^3 - \frac{1}{4}x^4 \right]_{0}^{3}
\]

\[
= \left(27 - \frac{81}{4} \right) - 0 = \frac{27}{4}.
\]
6. [15 points] We define the plane region R to be bounded by

\[y = x^2 \quad \text{and} \quad x = y^2. \]

Consider the volume V generated by rotating the region R around the x-axis.

(a) Using the method of cross-sections, compute the volume V described above.

To do cross-sections, we need the region described in terms of x. The two parabolas intersect at $x = 0 = a$ and $x = 1 = b$. Between $x = 0$ and $x = 1$, the higher parabola is $y = f(x) = \sqrt{x}$ and the lower curve is $y = g(x) = x^2$. Hence the volume is

\[
V = \int_{a}^{b} \pi [f(x)^2 - g(x)^2] \, dx = \int_{0}^{1} \pi \left[(\sqrt{x})^2 - (x^2)^2 \right] \, dx \\
= \pi \int_{0}^{1} (x - x^4) \, dx = \pi \left. \left(\frac{1}{2}x^2 - \frac{1}{5}x^5 \right) \right|_{0}^{1} = \pi \left(\frac{1}{2} - \frac{1}{5} \right) = \frac{3\pi}{10}.
\]

(b) Using the method of cylindrical shells, compute the volume V described above. Note: You should get the same result as in part 6a.

To do shells, we need the region described in terms of y. The two parabolas intersect at $y = 0 = c$ and $y = 1 = d$. Between $y = 0$ and $y = 1$ the rightmost curve is $y = x^2$ or $x = \sqrt{y} = h(y)$ and the leftmost curve is $x = y^2 = k(y)$. Hence the volume is

\[
V = \int_{c}^{d} 2\pi y[h(y) - k(y)] \, dy = \int_{0}^{1} 2\pi y(\sqrt{y} - y^2) \, dy \\
= 2\pi \int_{0}^{1} (y^{3/2} - y^3) \, dy = 2\pi \left. \left(\frac{2}{5}y^{5/2} - \frac{1}{4}y^4 \right) \right|_{0}^{1} = 2\pi \left(\frac{2}{5} - \frac{1}{4} \right) = \frac{3\pi}{10}.
\]
7. [20 points] For the function \(f(x) = \frac{\sqrt{x^2+1}}{x+5} \), the first two derivatives are

\[f'(x) = \frac{5x-1}{(x+5)^2 \sqrt{x^2+1}} \]

and

\[f''(x) = \frac{(3-2x)(5x^2+6x+9)}{(x+5)^3 (x^2+1)^{3/2}} \]

YOU NEED NOT VERIFY THESE FORMULAS.

Part (a) Find (and justify) all horizontal and vertical asymptotes of the graph \(y = f(x) \). At any vertical asymptotes compute both the left and right hand limits of \(f(x) \).

Since

\[
\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{\sqrt{x^2+1}}{x+5} = \lim_{x \to -\infty} \frac{\sqrt{1+x^{-2}}}{1+5/x} = \frac{\sqrt{1+0}}{1+0} = 1,
\]

and

\[
\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} \frac{\sqrt{x^2+1}}{x+5} = \lim_{x \to -\infty} \frac{\sqrt{1+x^{-2}}}{1+5/x} = -\frac{\sqrt{1+0}}{1+0} = -1,
\]

we see \(f \) has two horizontal asymptotes \(y = 1 \) approached at \(\infty \) and \(y = -1 \) approached at \(-\infty \). The only possible vertical asymptote is at the discontinuity \(x = -5 \). Since the numerator is positive \(f(x) > 0 \) for \(x > 5 \) and \(f(x) < 0 \) for \(x < 5 \). Hence

\[
\lim_{x \to -5^+} f(x) = +\infty, \quad \text{and} \quad \lim_{x \to -5^-} f(x) = -\infty.
\]

and \(x = -5 \) is a vertical asymptote.

(b) Find the intervals on which \(f(x) \) is increasing and those on which it is decreasing.

Note that \(f'(x) \) is undefined at the vertical asymptote \(x = -5 \). The denominator of \(f'(x) \) is always non-negative so \(f'(x) > 0 \) for \(x > 1/5 \) and \(f'(x) < 0 \) for \(-5 < x < 1/5 \) and for \(x < -5 \). Thus \(f \) is decreasing on \((-\infty, -5) \) and on \((-5, 1/5] \) and \(f \) is increasing on \([1/5, \infty) \).

CONTINUED ON THE NEXT PAGE
(c) Find the critical points of $f(x)$ and classify them as local maxima, local minima or neither.

$f'(x)$ is undefined at $x = -5$, but this is the asymptote and $f(-5)$ is also undefined, hence it is not a critical point. Solving $f'(x) = 0$ gives $x = 1/5$ as the only critical point. Since by (b), f' switches from negative to positive at $x = 1/5$, by the First Derivative Test, $x = 1/5$ is a local minimum.

(d) Find the intervals on which $f(x)$ is concave upward and those on which it is concave downward. (It may be helpful to notice that $5x^2 + 6x + 9 = 4x^2 + (x + 3)^2$ is positive for all x.)

The factors $5x^2 + 6x + 9$ and $(x^2 + 1)^{3/2}$ are both positive. $3 - 2x$ is positive for $x < 3/2$ and negative for $x > 3/2$. $(x + 5)^3$ is positive for $x > -5$ and negative for $x < -5$. Hence $f''(x)$ is negative on $(-\infty, -5)$ and on $(3/2, \infty)$ and $f''(x)$ is positive on $(-5, 3/2)$. Hence f is concave down on $(-\infty, -5)$ and on $(3/2, \infty)$ and f is concave up on $(-5, 3/2)$.

(e) On the next page sketch the graph of $y = \sqrt{\frac{x^2 + 1}{x+5}}$ showing the results of (a)-(d). (The following values may be helpful $f(1/5) = 1/\sqrt{26} \approx 0.196$, $f(3/2) = 1/\sqrt{13} \approx 0.277$.)