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Computing weight multiplicities
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Let π = πλ, V = V λ be the representation of a reductive group G with highest weight λ. I shall discuss

in this essay formulas of [Freudenthal:1954] (see also [Freudenthal­de Vries:1969]) and [Moody­Patera:1982]
that provide a reasonably efficient way to compute the dimensions of all its weight subspaces Vµ.

The version of Moody and Patera replaces the set of positive roots in Freudenthal’s formula by orbits among

the roots of ’parabolic’ subgroups of the Weyl group, and is more efficient only when the number of singular
weights is relatively large. Sadly, I am not aware of any dramatic improvement of Freudenthal’s formula for

groups of low rank.
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1. SL(2)

Freudenthal’s formula depends on a clever observation about representations of SL2.

Let

h =

[
1 0
0 −1

]

x =

[
0 1
0 0

]

y =

[
0 0
1 0

]
.

Here [x, y] = h, [h, x] = 2x, and [h, y] = −2y.

Suppose V to be a space on which sl2 acts, with highest weight λ and highest weight vector v0. For each
n > 0, let vn = yn ·v0. Thus

x ·v0 = 0

h ·vn = (λ− 2n)vn

y ·vn = vn+1 .

Since all weights have multiplicity one in V , we must have x·vn = cnvn−1 for all n ≥ 1. We may take c0 = 0,
but what are the other cn? These can be found by induction. For n > 0

x ·vn = x ·y ·vn−1 = [x, y] ·vn−1 + y ·x ·vn−1 = [x, y] ·vn−1 + cn−1vn−1 = h ·vn−1 + cn−1vn−1 ,

so that

cn = (λ− 2(n− 1)) + cn−1 .
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This gives us

c0 = 0

c1 = λ

c2 = (λ− 2) + c1

= 2λ− 2

c3 = (λ− 4) + c2

= 3λ− 6

. . .

This leads to an explicit formula cn = nλ−n(n− 1), but that’s not what we want. We can also express what
we have found as

π(y)π(x)vn = cnvn .

with

cn =
∑n−1

k=0
(λ− 2k)

=
∑n

k=1
(µ+ 2k) (µ = λ− 2n)) .

Now µ = λ − 2n is the eigenvalue of π(h) for the eigenvector vn. So I can also put this in a slightly more

general form: if v is an eigenvector of π(h) in the weight space Vµ of an irreducible representation of sl2, then

trace π(y)π(x)
∣∣ Vµ =

∑

k≥1

〈µ+ kγ, h〉dimVµ+kγ .

Freudenthal’s clever observation is that this makes sense, and remains valid, for an arbitrary representation

(π, V ) of sl2, since it will be a direct sum of irreducible ones and the terms are additive.

There is one last transformation to be made. First of all, introduce the Killing form on sl2, and replace y
by the element x• such that x•x• = 1. It will be a scalar multiple of y, specified in Proposition 5.6. If we

multiply both sides of this last equation by 2/‖h‖2 then according to Proposition 5.5 we therefore get:

1.1. Proposition. If Vµ is the µ­weight subspace of any finite­dimensional representation π of sl2, then

trace π(x)π(x•)
∣∣Vµ =

∑

k≥1

(
(µ+ kγ)•γ

)
dimVµ+kγ (x ∈ gγ) .

2. Freudenthal’s formula

Now suppose g arbitrary, (π, V ) the representation of highest weightλ. Restricted to the copy of sl2 associated
to the root γ the last formula becomes

trace π(xγ)π(x
•

γ) |Vµ =
∑

k≥1

((µ+ kγ)•γ) dimVµ+kγ .

Recall from Proposition 5.7 that the Casimir operator is

∑

α

hαh
•

α +
∑

γ∈Σ

xγx
•

γ .

Recall from Theorem 5.8 that it acts on V λ as the scalar

‖λ+ ρ‖2 − ‖ρ‖2 .
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We now have for each weight µ two different ways to evaluate the trace of the Casimir operator on V λ
µ . On

the one hand

trace π(C) |Vµ =
(
‖λ+ ρ‖2 − ‖ρ‖2

)
dimVµ .

On the other, we can evaluate terms explicitly. By Proposition 5.1 the first part is

∑

α

hαh
•

α |Vµ = ‖µ‖2 dimVµ .

The second part is ∑

γ∈Σ

trace π(xγx
•

γ) |Vµ =
∑

γ∈Σ

∑

k≥1

(
(µ+ kγ)•γ

)
dim Vµ+kγ .

Combining these, we deduce what I call the raw formula of Freudenthal:

2.1. Proposition. For any weight µ of the representation on V = V λ with highest weight λ

(‖λ+ ρ‖2 − ‖ρ‖2) dim Vµ = ‖µ‖2 dimVµ +
∑

γ∈Σ

∑
k≥1

((µ+ kγ)•γ) dimVµ+kγ .

More practical formulas rely on two simple facts. For every root γ let

Sγ =
∑

k≥1
((µ+ kγ)•γ) dimVµ+kγ .

Then

(a) if w(µ) = µ then Sw(γ) = Sγ ;

(b) S−γ = (µ•γ) + Sγ .

For formula (a): if w(µ) = µ then µ+ w(γ) = w(µ + γ) and

Sw(γ) =
∑

k≥1

(
(w(µ + k γ)•w(γ)

)
dimVw(µ+k γ) = Sγ .

Now for formula (b). Since the root reflection sγ preserves the λ­string through µ, and the middle of the

string is orthogonal to γ,

∑
k∈Z

(
(µ+ kγ)•γ

)
dimVµ+kγ = 0 .

Therefore
Sγ =

∑

k≥1

(
(µ+ kγ)•γ

)
dim Vµ+kγ = −

∑

k≤0

(
(µ+ kγ)•γ

)
dimVµ+kγ

=
∑

k≥0

(
(µ+ k(−γ))•(−γ)

)
dimVµ+k(−γ)

= −µ•γ + S−γ .

Property (b) leads immediately to the best known version of Freudenthal’s formula:

2.2. Theorem. (Freudenthal) For V = V λ

(
‖λ+ ρ‖2 − ‖µ+ ρ‖2

)
dimVµ = 2

∑

γ>0

∑

k≥1

(
(µ+ kγ)•γ

)
dim Vµ+kγ .

This can be used to compute dimVµ recursively for dominant weights µ, starting with dimVλ = 1. In the

process of doing this, it may very well happen that ν = µ+ kγ is not dominant. In that case, there exists α
with 〈ν, α∨〉 < 0. In these circumstances sαν has greater height than ν. A sequence of such reflections will
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produce an element in the fundamental domain, leaving the weight multiplicity invariant and continually
raising heights. That is to say, we can find w in W such that µ+ kγ lies in the fundamental domain D. The

multiplicity dimVw(µ+kγ) is the same as dim Vµ+kγ . Induction therefore remains effective, if we have stored

values of µ•γ for all µ in D and positive roots γ, as well as values of γ •γ.

This result has one immediate and useful consequence. Let Ω be the set of weights of π, Ω++ that of dominant
weights in Ω. The consequence is:

2.3. Corollary. If µ 6= λ lies in Ω, then there exists a root γ > 0 such that µ+ γ also lies in Ω.

Proof. What the formula implies immediately is that both µ and some µ+ kγ with k ≥ 1 both lie in Ω. But
the weights in a γ­string are the weights in a representation of a copy of sl2, and there are therefore no gaps

in it. So µ+ γ is also in Ω.

3. Constructing the dominant weights

Continue to let Ω be the set of weights of π, Ω++ that of dominant weights in Ω. The first requirement in the

computation of weight multiplicities is to be able to scan through Ω++. This is based on:

3.1. Lemma. If µ 6= λ is in Ω++, there exists a root γ > 0 such that µ+ γ is also in Ω++.

The point is that one can construct all of Ω++ by starting with λ and descending from there, without ever

leaving it.

Proof. The proof is constructive. Suppose µ 6= λ lies in Ω++. By Corollary 2.3 there exists γ > 0 with µ + γ
in Ω. If µ+ γ is dominant, there is nothing more to prove.

Otherwise, suppose µ+ γ not to be dominant. Then

〈µ+ γ, α∨〉 = 〈µ, α∨〉+ 〈γ, α∨〉 < 0

for some α in ∆. Since µ is dominant the first term is non­negative and hence 〈γ, α∨〉 < 0. Consider

sα(µ+ γ) = µ+ γ − 〈µ+ γ, α∨〉α .

The coefficient in the second term is positive. This reflection also lies in Ω. The sum µ+ γ + α also lies in Ω,
because of convexity. Since 〈γ, α∨〉 < 0 and sα takes all positive roots except α to positive roots, sα(γ) is a

positive root, and again by convexity γ + α is also a root. Thus we can replace γ by γ + α, and repeat the

argument. Sooner or later the repetition has to stop.

The norms ‖µ‖2 and dot products µ•γ can be computed by descending induction on height:

(µ− γ)•δ = (µ•δ)− (γ •δ), ‖µ− γ‖2 = ‖µ‖2 − 2(µ•γ) + (γ •γ) ,

given pre­computed values of γ •δ. So we compute the values of λ•γ for all γ > 0 directly, and then compute

other values as we construct the dominant closure of λ.

4. The formula of Moody­Patera

Moody and Patera modify Freudenthal’s formula by taking into account a certain redundancy in it. In some
situations, this speeds up things considerably.

It starts with the formula Proposition 2.1:

(‖λ+ ρ‖2 − ‖ρ‖2) dim Vµ = ‖µ‖2 dimVµ +
∑

γ∈Σ

∑

k≥1

((µ+ kγ)•γ) dimVµ+kγ .

By property (a) above the sum

Sγ =
∑

k≥1

((µ+ kγ)•γ) dimVµ+kγ
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depends only on the WT ­orbit of γ. We can therefore convert the sum into one over orbits instead of over
roots. If we pick one element γO for every orbit O, the sum on the right hand side becomes

∑
O
|O|

∑

k≥1

((µ+ kγO)•γO) dim Vµ+kγO
.

If the number of µ fixed by elements of the weyl group is fairly large, this can lead to a noticeably more

efficient calculation.

For the final statement, we need to consider how WT acts on roots. First of all, the region

{v | 〈v, α∨〉 ≥ 0 for α ∈ T }

is a fundamental domain for WT , so in every orbit O there is a unique root γO in this region. Also, the group

WT takes ΣT into itself, and each of the two sets Σ± − Σ±

T into themselves. Let

‖O‖ =

{
|O| if O ⊂ ΣT

2|O| if O ⊂ Σ+ − Σ+

T .

4.1. Theorem. Moody­Patera) Suppose V to be the irreducible representation with highest weight λ, µ a
weight of V , and T to be chosen so that WT is the subgroup of W fixing µ. Then

(
‖λ+ ρ‖2 − ‖µ+ ρ‖2

)
dimVµ =

∑

O

‖O‖
∑

k≥1

(
(µ+ kγO)•γO

)
dimVµ+kγO

.

In this, the sum is over the orbits O of WT in ΣT ∪
(
Σ+ − Σ+

T

)
.

Proof. There are three kinds of orbits: (i) those in ΣT ; (ii) those in Σ+ − Σ+

T ; (iii) those in Σ− − Σ−

T .

If O is of type (ii), then the corresponding orbit −O is of type (iii), and according to property (b) for γ in O
we have S−γ = µ•γ+Sγ . If γ lies in in ΣT ((i.e. is of type (i)) then µ•γ = 0. So the sum over orbits becomes

the one in Theorem 4.1.

It is worthwhile noting that if γ is in ΣT and in the positive chamber for WT then it has to be positive, since it

〈γ, α∨〉 must be positive for at least one α. Thus γO is positive in all cases. It is perhaps also worth noticing

that in case (i) the orbits are parametrized by the lengths of roots.

If many multiplicities are to be calculated it is best to compute data for all possible O in advance. The same
technique remarked on in connection with the original Freudenthal formula can be used for dealing with the

case that ν = µ+ kγO is not dominant.

[Bremner:1986] contains practical advice (regarding an implementation in the now forgotten but once well
loved programming language Pascal). [Moody­Patera:1982] discusses some examples for G = E8, where

there are indeed a relatively large number of singular weights.

5. Appendix. The Casimir element

In this section I’ll recall a number of properties of the Casimir element of Z(g), including in particular how
it acts on irreducible finite­dimensional representations of g.

DUALITY AND INNER PRODUCTS. Suppose for a moment that V is any real vector space on which is assigned a

non­degenerate inner product x•y. This gives rise to an associated isomorphism ϕ of V with its linear dual

V̂ , defined by the formula

〈u, ϕ(v)〉 = u•v .

Since the inner product is symmetric, ϕ∨ = ϕ. There is an associated inner product on V̂ :

û• v̂ = ϕ−1(u)•ϕ−1(v) .
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5.1. Proposition. Suppose (vi) to be a basis of V , (v•

i ) its dual with respect to the inner product. Then:

û• v̂ =
∑

〈vi, û〉〈v
•

i , v̂〉 .

Proof. It suffices to prove this for û = v̂ = ϕ(v). We may write v =
∑

(v •v•

i ) vi and then deduce

‖v̂‖2 = ‖v‖2

= v •

(∑
(v •v•

i ) vi

)

=
∑

(v •vi)(v •v•

i

=
∑

〈vi, v̂〉〈v
•

i , v̂〉 .

5.2. Corollary. The element
∑

vi ·v
•

i in S2(V ) is independent of the choice of basis.

THE KILLING FORM. The Killing form on g is the bilinear pairing

x•y = trace (adxady) .

It is manifestly invariant with respect to any automorphism of g.

Its radical certainly contains the center z of g, so it is determined completely by its restriction to the semi­
simple component gss. For convenience, assume temporarily that g itself is semi­simple. Since the trace of a

nilpotent transformation vanishes, the direct sum decomposition

g = h
⊕∑

µ>0
(gµ ⊕ g−µ) .

is orthogonal with respect to the Killing form. For h in h

h•h =
∑

µ
〈µ, h〉2 ,

so that the Killing form is positive definite on h.

Choose for each root µ some xµ 6= 0 in gµ and then choose yµ in g−µ such that 〈µ, hµ〉 = 2, where
hµ = [xµ, yµ]. Since the Killing form is invariant,

[xµ, hµ]•yµ + hµ • [xµ, yµ] = −2 xµ •yµ + hµ •hµ = 0 .

Of course adxµ
and adyµ

are nilpotent. Hence:

5.3. Proposition. For any root µ
xµ •xµ = 0

yµ •yµ = 0

xµ •yµ =
hµ •hµ

2
.

Consequently, the two­dimensional space spanned by xµ and yµ is a hyperbolic plane, and we deduce:

5.4. Proposition. The Killing form is non­degenerate on gss.

In other words, its radical is the center z of g.

Continue to assume g semi­simple. Choose a basis (hi) of h, and a basis (xµ) of the root spaces. Let x•

µ be

the dual basis with respect to the Killing form. From the previous Proposition:
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5.5. Proposition. We have

x•

µ =
2yµ

hµ •hµ

.

Because the Killing form is invariant under automorphisms, the restriction of the form to h is invariant under

the Weyl group. In particular, reflections are orthogonal, which means that

2

(
hµ •v

hµ •hµ

)
= 〈µ, v〉 .

This implies that

ϕ

(
2hµ

hµ •hµ

)
= µ

which implies in turn:

5.6. Proposition. We have

λ•µ =
2〈λ, hµ〉

hµ •hµ

.

THE CASIMIR ELEMENT. Continue to assume that g is semi­simple.

There is a canonical map from g⊗ g∨ to End(g), taking x⊗ x̂ to the linear transfromation

y 7−→ 〈y, x̂〉x .

It is a linear isomorphism. As I have recalled at the beginning of this section, the Killing form induces a linear

isomorphism of g⊗ g∨ with g⊗ g. It is g­equivariant, since the Killing form is g­invariant. There is a linear

map from g⊗ g to the enveloping algebra U(g), taking x ⊗ y to xy. All in all these maps fit into a sequence
of g­equivariant isomorphisms

EndC(g) ∼= g⊗ g∨
Killing
−→ g⊗ g −→ U(g)

The identity transformation of g thus gives rise to a unique element C of U(g), the Casimir element. Since

I commutes with elements of g, the Casimir does too, and since U(g) is generated by g it lies in the center

Z(g) of U(g).

Hence:

5.7. Proposition. If (xi) is any a basis of g, (x•) its dual with respect to the Killing form, then

C =
∑

xix
•

i .

Proof. The linear transformation of g

y 7−→
∑

i

〈x•

i , y〉xi

is the identity transformation, since it takes each xi to itself.

If π is an irreducible representation of g, the Casimir element will act on it by a scalar, which is easily
described:

5.8. Theorem. On the irreducible g­module V λ with lowest weight λ, the Casimir C acts as multiplication by
the scalar ‖λ− ρ‖2 − ‖ρ‖2.

For a highest weight this becomes
‖λ+ ρ‖2 − ‖ρ‖2 .
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Proof. Let n be the nilpotent Lie algebra spanned by the xµ with µ > 0. If λ is the lowest weight, then the
corresponding eigenspace may be identified with V/nV . A well known argument tells us that for every x in

Z(g) there exists a unique element HC(x) in U(h) such that x − HC(x) lies THe element x therefore acts on

V/nV as HC(x) does. The Lie algebra h acts on this quotient by the character λ. The character λ extends to a
homomorphism from Z(g) to C: 〈λ,

∏
xi〉 =

∏
〈λ, xi〉. Therefore x acst by the scalar 〈λ,HC(x)〉.

Now
C =

∑
hih

•

i +
∑

µ>0
xµx

•

µ +
∑

µ<0
xµx

•

µ

=
∑

hih
•

i +
∑

µ<0

[xµ, x
•

µ] +
∑

µ>0
(xµx

•

µ + x•

−µx−µ) .

So

HC(C) =
∑

hih
•

i +
∑

µ<0

[xµ, x
•

µ] .

and by Proposition 5.5

〈λ,C〉 =
∑

〈λ, hi〉〈λ, h
•

i 〉 −
∑

µ>0

2〈λ, hµ〉

hµ •hµ

Apply Proposition 5.1 and Proposition 5.6 to see:

〈λ,HC(C)〉 = ‖λ‖2 − 2λ•ρ = ‖λ+ ρ‖2 − ‖ρ‖2 .
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