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This essay contains proofs of Hölder’s and Minkowski’s inequalities, as well as some examples of how
they are used in the theory of Banach spaces. There is nothing new, but my reliance on original works

seems to be unusual.
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1. Hölder’s Lemma [Minkowski.tex]

Otto Hölder was one of the first mathematicians to be interested in convexity as a separate topic in
mathematics. As far as I know, the following elementary result was first formulated in [Hölder:1889]:

1.1. Lemma. Suppose ϕ to be a real function on an interval in R with continuous and weakly increasing[holders]

derivative. For (xi) in the interval and all ai ≥ 0 with
∑

ai = 1

ϕ
(

∑

aixi

)

≤
∑

aiϕ(xi) .

As we’ll see more clearly in a moment, the hypothesis amounts to the assertion that the graph of y = ϕ(x)
is convex. The Lemma can be summarized informally as

ϕ(mean) ≤ mean(ϕ) .

In practice, the hypothesis is verified by showing ϕ′′ > 0.

Proof. The assertion is equivalent to the claim that

ϕ

(∑

aixi
∑

ai

)

≤

∑

aiϕ(xi)
∑

ai
.

if all ai > 0. Since
∑n

1aiXi)
∑

ai
=

∑n−1
1 ai
∑n

1ai
·

(

∑n−1
1 aiXi
∑n−1

1 ai

)

+
anXn
∑n

1ai
,

induction reduces the claim to the case n = 2: if z = (1− s)x + sy with 0 ≤ s ≤ 1, then

ϕ(z) ≤ (1− s)ϕ(x) + sϕ(y) .

In other words, in between x and y the graph of ϕ lies below or on the straight line from (x, ϕ(x)) to

(y, ϕ(y)):
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y = ϕ(x)

(x, ϕ(x))

(y, ϕ(y))

(z, ϕ(z))

(z, (1− s)ϕ(x) + s(ϕ(y))

x yz = (1− s)x+ sy

images/convex-phi.eps

For the proof:

(

(1 − s)ϕ(x) + sϕ(y)
)

− ϕ(z) =
(y − z)ϕ(x) + (z − x)ϕ(y)

y − x
− ϕ(z)

=
(y − z)(ϕ(x)− ϕ(z)) + (z − x)(ϕ(y) − ϕ(z))

y − x

=
(z − x)(ϕ(y) − ϕ(z))− (y − z)(ϕ(z)− ϕ(x))

y − x

=
(z − x)(y − z)ϕ′(θy)− (y − z)(z − x)ϕ′(θx)

y − x

=
(z − x)(y − z)(ϕ′(θy)− ϕ′(θx))

y − x
≥ 0 .

Here, according to one version of the mean value theorem, x ≤ θx ≤ z ≤ θy ≤ y.

Replacing ϕ by its negative:

1.2. Corollary. Supposeϕ to be a real function on an interval inRwith continuous and weakly decreasing[holders-cor]

derivative. For (xi) in the interval and all ai ≥ 0 with
∑

ai = 1

ϕ
(

∑

aixi

)

≥
∑

aiϕ(xi) .

2. Hölder’s inequality [Minkowski.tex]

If one sets ϕ(x) = xp in Hölder’s Lemma, with p > 1, one deduces the result commonly known as
Hölder’s inequality.

2.1. Proposition. For p > 1, 1/q + 1/p = 1[holders-ineq]

∑

xiyi ≤
(

∑

|xi|
q
)1/q

·
(

∑

|yi|
p
)1/p

.

Proof. It suffices to prove this for xi, yi > 0, since

∑

xiyi ≤
∑

|xiyi| .
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If we set ϕ(x) = xp in Lemma 1.1, we get♥ [holders]

(∑

aib
i

∑

ai

)p

≤

∑

aib
p
i

∑

ai
,

and then
∑

aibi ≤
(

∑

ai

)1−1/p(∑

aib
p
i

)1/p

.

But now is we set 1/q = 1− 1/p, ai = xqi , aib
p
i = ypi we deduce

a
1/q
i = xi

a
1/p
i bi = yi

a1/p+1/qbi = aibi = xiyi .

3. Minkowski’s inequality [Minkowski.tex]

Minkowski’s inequality is found on pp. 115–117 of [Minkowski:1896/1910], which put convexity into

the main stream of mathematics:

3.1. Proposition. For p > 1[minkowskis]

(

∑

(xi + yi)
p
)1/p

≤
(

∑

|xi|
p
)1/p

+
(

∑

|yi|
p
)1/p

.

Minkowski’s proof is an elementary calculus exercise, and has the rare virtue of being at once clever and
straightforward. I reproduce it here.

Proof. It is to be shown that

ψ =
(

∑

api

)1/p

+
(

∑

bpi

)1/p

−
(

∑

(ai + bi)
p
)1/p

≥ 0 .

Fix the array (ai) and consider this a function of (bi) alone. Note that

∂ψ

∂bi
=

(

bi
‖b‖p

)p−1 (
(ai + bi)

‖a+ b‖p

)p−1

= say βp−1
i − γp−1

i

if

β =
b

‖b‖p
, γ =

a+ b

‖a+ b‖p
.

We then have

(3.2)
1 = ‖β‖p = (βp

1 + · · ·+ βp
n)

1/p

= ‖γ‖p = (γp1 + · · ·+ γpn)
1/p .[test]

I’ll say that b is exceptional if it is proportional to a, or equal to 0. For exceptional points, ψ = 0. Suppose

we are given a point b that is not exceptional. Then some β(k) 6= γ(k). We cannot then have β(k) ≤ γ(k)
for all k because (3.2) would not hold. So there exists some β(k) > γ(k) ≥ 0, and since p > 1 we must♥ [test]

have at the point ∂ψ/∂b(k) > 0. This implies some point b − hε(k) has a smaller value of ψ for very
small h.

Now fix c > 0 and consider the region bi ≤ c for all i. It is compact, and there must exist a point bwhere

ψ is a minimum. If this minimum is not 0, then b is not exceptional and there exists a point in the region

where ψ is less. Therefore b must be exceptional, and the minimum is 0.

Remarks. This inequality is also a consequence of the corollary of Hölder’s Lemma (the version with

ϕ′′ < 0) for ϕ(x) = (1 + x1/p)p. This was observed with a note of surprise in [Bourbaki:1981].
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4. Helly’s version [Minkowski.tex]

I’ll offer here geometric proofs of Minkowski’s and Hölder’s inequalities, suggested in [Riesz:1913] and

[Helly:1921].

I’ll use an elementary observation: if s ≥ 0 and x > 0 then x ≤ 1 if and only if xs ≤ 1.

In a picture:

y = x
1/3

x = 0 x = 1
tvs-images/minkowskisa.eps

It is Riesz who seems to have first observed in print that the basic idea of the inequalities we are looking

at is contained in the following, although Minkowoski must certainly have known it:

4.1. Proposition. The region ‖x‖p ≤ 1 is bounded and convex.[convex]

For example, in two dimensions (given the first observation above):

|x|3 + |y|3 ≤ 1

tvs-images/minkowskisc.eps

Proof. That it is bounded should be clear, since sup |xi| ≤
∑

|xi|
p. Given the observation, it then suffices

to show the region
∑

|xi|
p ≤ 1 is convex. So suppose

∑

|xi|
p ≤ 1,

∑

|yi|
p ≤ 1. It is to be proved that

∑

|(1− s)xi + syi|
p| ≤ 1 for all s in [0, 1].

But it follows from Lemma 1.1 that♥ [holders]

∑

∣

∣(1− s)xi + syi
∣

∣

p
≤
∑

(1− s)|xi|
p + s|yi|

p

= (1− s)
(

∑

|xi|
p
)

+ s
(

∑

|yi|
p
)

= (1− s)‖x‖p + s‖y‖p

≤ (1− s) + s = 1

Suppose for the moment that Ω is any bounded, closed, convex region in Rn. Each array (ui) defines a

linear function 〈u, x〉 =
∑

uixi on R
n. Define

‖u‖∗ = sup
x∈Ω

|〈u, x〉| .
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Since the region Ω is closed and convex, it is the intersection of all regions 〈u, x〉 ≤ ‖u‖∗.

I recall that a norm on R
n is a function ‖x‖ taking non­negative values such that

(a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖;
(b) ‖cx‖ = |c|‖x‖;

(c) ‖x‖ = 0 if and only if x = 0.

4.2. Proposition. Given the closed, bounded, convex set Ω, ‖u‖∗ is a norm.[convex-dual]

Proof.
‖u+ v‖∗ = sup

x∈Ω
〈u+ v, x〉 = 〈u, x〉+ 〈v, x〉 ≤ ‖u‖∗ + ‖v‖∗ .

4.3. Corollary. In this situation[holders-convex]

|〈u, x〉| ≤ ‖u‖∗ · ‖x‖ .

As we shall see in a moment, this is a generalization of Hölder’s inequality.

What is ‖u‖∗ if ‖x‖ = ‖x‖p with 1 < p < ∞? The answer is a straightforward application of Lagrange
multipliers. Thsi tells you that to find the critical values of f(x) on g(x) = 0, you find the points of

g(x) = 0 where ∇f is proportional to ∇g. In our case that gives the equation

(4.4) (ai) = λ(xp−1
i )[hold]

for some constant λ, subject to the condition
∑

xpi = 1. The equation ai = λxp−1
i gives xi = (ai/λ)

1/p−1,

and if q = p/p− 1 this leads to

λ =
(

∑

aqi

)1/q

= ‖a‖q .

But then at the maximum
∑

aixi = λ = ‖a‖q

and then to Hölder’s inequality.

Minkowski’s inequality is now an immediate consequence of Proposition 4.2.♥ [convex-dual]

5. Applications [Minkowski.tex]

• Suppose 1 ≤ p <∞. Minkowski’s inequality implies that

‖c‖p =
(

∑

|c(i)|p
)1/p

is a norm on the vector space of sequences (c(i)) of complex numbers. Let ℓp be the space of all sequences

for which the norm is finite.

5.1. Proposition. The vector space ℓp is complete.[lp]

Proof. Replacing fn by a subsequence if necessary, we may assume that ‖fn+1 − fn‖p ≤ 1/2n. Since
|f(n)| ≤ ‖f‖p, the point values of fn converge. The limit will be in ℓp.

For a while, suppose p > 1, 1/p+ 1/q = 1.

In the Hilbert space ℓ2, we know that 〈f, f〉 = ‖f‖22. There is a similar phenomenon in ℓp:

5.2. Lemma. Suppose (g(k)) to be a sequence of complex numbers. If f(k) = g(k) |g(k)|q−2 then[innerp]

‖f‖pp =
∑

f(k)g(k) = ‖g‖qq .

Proof. Because |f(k)|p = f(k)g(k) = |g(k)|q . ’
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For f in ℓp and g in ℓq , Hölder’s inequality implies that

〈g, f〉 =
∑

g(i)f(i) ≤ ‖g‖q · ‖f‖p <∞ .

If we define

Tg: ℓ
p −→ C, f 7−→ 〈g, f〉

then Tg is in the continuous dual of ℓp and its norm is

|||Tg||| = supf 6=0

〈g, f〉

‖f‖p
≤ ‖g‖q .

5.3. Proposition. For 1 < p <∞ the map g 7→ Tg is an isometry of ℓq with the continuous dual of ℓp.[p-duals]

Proof. I first show that |||Tg||| = ‖g‖q. Since

〈g, f〉 ≤ |||Tg||| · ‖f‖p ≤ ‖g‖q · ‖f‖p ,

it suffices to find f 6= 0 in ℓp such that

〈g, f〉 = ‖g‖q · ‖f‖p .

For this to happen, it is plausible to restrict the search to f such that each |f(k)|p is a scalar multiple of

|g(k)|q , or even |f(k)|p = |g(k)|q . For this, set

f(k) = g(k) |g(k)|q−2 ,

and apply Lemma 5.2.♥ [innerp]

It must now be shown that every continuous linear map γ from ℓp to C is equal to some Tg. It is easy to
define the candidate. Let εm be the vector in ℓp with

εm(k) =
{

1 if k = m
0 otherwise.

Then set
g(m) = 〈γ, ε(m)〉 = g(m) .

It must be shown that g is in ℓq and that Tg = γ. The second is easy, since the finite sums of the εk are
dense in ℓp.

As for the first: since γ is continuous, we know that |〈γ, f〉| ≤ C · ‖f‖p for some C > 0 and all f in ℓp.

Suppose g[m] to be g truncated to the first m terms. Then Then

|〈γ, f〉| = ‖g[m]‖qq ≤ C · ‖f [m]‖p = C · ‖g[m]‖q/pq ,

leading to

‖g[m]‖q−q/p
q = ‖g[m]‖q ≤ C .

Let m go to ∞.

So the dual of ℓp is ℓq and the dual of ℓq is ℓp. In other words, these spaces ℓp are reflexive.

• Define ℓ∞ to be the vector space of all bounded sequences with norm

‖c‖∞ = sup |ci| ,

and ℓ∞ to be the subspace of sequences with lim ci = 0.
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5.4. Lemma. The space ℓ∞ is complete, and ℓ∞ is a closed subspace. The inner product[linfty]

〈g, f〉 =
∑

figi

defines a pairing of ℓ∞ and ℓ1.

5.5. Proposition. This pairing identifies ℓ1 with the continuous dual of ℓ∞, and ℓ∞ with the continuous[infty-dual]

dual of ℓ1.

In other words, the spaces ℓ∞ is not reflexive. The space ℓ∞ is closed in ℓ∞. According to Hahn­Banach,

there are many continuous lineare forms on ℓ∞ vanishing on ℓ∞. Fopr example, one of them is

(xn) −→ lim
m→∞

xm+1 + xm+2 + · · ·+ x2m
m

.

As Helly remarks, the spaces ℓ∞ and ℓ∞ differ in one important way—the space ℓ∞ possesses a countable

dense subset, whereas ℓ∞ does not.
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