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This essay is one of a series that I intend to be an introduction to the Weil representations of SLo (%), for
k alocal field. It amounts to an introduction to Weil’s theory of Fresnel integrals. For real fields these
are classical objects in the physics of diffraction, and for p-adic fields they are natural generalizations
of Gauss sums for forms over finite fields. Following Minkowski, I shall use them to classify quadratic
forms over p-adic fields.

Earlier essays in this series are Introduction to quadratic forms and Quadratic forms over finite fields. In
this version, I shall assume every field not to have characteristic two.
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Part I. Fourier transforms and quadratic forms
1. Fourier transforms

Let I be a local field.

SCHWARTZ SPACES. Suppose V to be a vector space of dimension n over F', which I may as well take to
be F.

e Suppose I to be R. The Schwartz space S(V) is that of all smooth functions f on V' for which all
semi-norms

[ fllm.n = Slip! [0 f /9™ (v) |- [[ol|"™

are bounded. These assign to S(V') the structure of a Fréchet space. A tempered distribution on V' is a
continuous linear function on S(V). To define S(C), consider C" as R?".

e Now suppose F' to be p-adic. If L C M are two lattices in V, the vector space C(M /L) embeds into
C(V) as the subspace of functions with support in M and invariant under translation by elements of L.
The Schwartz space of V' is the union of all of these—the space of all locally constant complex-valued
functions on V' of compact support. This possesses the trivial topology according to which U is open if
the intersection of U with each of these subspaces is open. All linear functions are continuous.

THE STANDARD ADDITIVE CHARACTERS. If v is a non-trivial character of the additive group F), then every
other character is some v, (z) = 1(ax). To parametrize the group of all characters it suffices to fix one.
There are standard ways to do this.

o If I/ = R, the standard additive character ' takes x to e?™**. Its kernel is Z.
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o If I/ = C, it takes z to e2™i(3+72),

e Suppose F' = Q,,. The group Q,,/Z,, is isomorphic to the p-torsion in Q/Z. Hence there exists for every
2 in F an integer £ > 0 and m in Z such that

z —m/p"
lies in Z,. The number m is unique modulo p*. Define
V() = T

The kernel of this character is Z,,.

o If F'is a finite extension F'/ Qp, define

Vr(z) = do, (TRr/g, (7)) -
The inverse different of the extension F'/Q),, is the fractional ideal

1971

F/Q, = {(E er | TRF/QP((EUF) C Zp} .

Itisalso {x € F|¢¥(xor) = 1}, the 0 p-stable kernel of 1.
e Suppose F' = Fy((t)). Since FF,, is isomorphic to Z/p, the map

m eQTmm/p

defines a character of IF),. Define 1 on IF, to be the composite of this with the trace from [F, to IF,,, then
finally on a Laurent series 3 ¢ t* set

Yr(z) = Yr(c-1)
(the residue).

FOURIER TRANSFORMS. A bilinear form B on V is non-degenerate if B(z, V) = 0 implies that x = 0.
Suppose B to be a non-degenerate bilinear form. Eventually I'll deal only with symmetric forms, so in
order to make notation slightly more convenient I'll assume that from now on. Given a basis A for V
and the corresponding coordinate system there exists a matrix M p with entries in F' such thatif u = Az,
v = Ay then

B(u,v) = =Mpy.

Since B is assumed to be non-degenerate, det(Mp) # 0.

Suppose 9 to be a non-trivial unitary character of the additive group of F'. The Fourier transform
determined by B, 1, and a choice of Haar measure du on V' is defined formally by the specification

flw) = /V Fi(=B(u, v)) du.

This is well defined when f isin S(V'), and is then itself in S(V')—conditions of smoothness on f translate

A~

to conditions of rapid decrease of f, and conditions of rapid decrease on f translate to conditions of
smoothness of f. As is well known, it is in fact an isomorphism of S(V') with itself. More precisely,

f (v) = c- f(—v) for some constant ¢ # 0. What is ¢ = c(1), dz)?

I'll find it explicitly in various cases, when 1) is the standard additive character of F', because it is easy
enough to modify answers to fit other cases. But as a preliminary I ask, how does c depend on the choices
of 1 and dx?
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1.1. Lemma. For 1) an additive character of F', dx a Haar measure on F', a in F'*

(a, dr) = |a] " c(¢, dix)
c(p,adr) = a*c(y,dx) .

Proof. Only the first might not be transparent. Let p,f(v) = f(a~!v), and let ®f be the Fourier
transform of f with respect to 1,. Then a simple computation shows that

[ f](v) = trjaf = la] " paf (v),

which implies that f= o (F'f). But then
[@Df] = 1114 ®f = |a| " pa(@f) = |a| "F . 0

The Haar measure dz is called self-dual with respect to ¢ if ¢(1, dz) = 1.
1.2. Corollary. If dz is self-dual with respect to 1, then |a|"/ 2dz is self-dual with respect to ;.
e First suppose that ' = R, V' = R".

Suppose L to be a lattice in V', which is to say a free module over Z of rank n. Fix a Z-basis of L, and let
M p be the corresponding matrix. The quotient V/L is compact. Let L be its dual lattice with respect
to 1 and B, or in other words set

L+ = Anny g(L) = {z € V [(B(L,2)) =1} .

This is the same as the lattice of all x in V such that B(L, z) C Z. It has as basis the columns of M. If
B takes integral values on L, so that M is an integral matrix, then L C L+ and |L+/L| = |det Mp|.

For example, if V =R, B(x,y) = 2y, and L = Z, then L+ =1

The measure on V' determines also a measure on V/L. Any A in L determines a character of V/L:
v — P(B(v, \)).

For any smooth function F on V/L and X in L' let

F(\) = VL F(x))p(=B(x, \)) d,

its Fourier coefficient at A\. The theory of Fourier series tells us that

Fa) = ———— 3" FO)6(B(, V),

meas(V/L) e
and in particular that
1 ~
1. F0) = ———=" F(N).
(1.3) O) = e 7D XGZLZL ()

For f in S(V') apply this to
F(z) = fu(x) =) flz+0).

leL
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Then (1.3) can be reinterpreted as the Poisson sum formula

(1.4). > )= m > F.
A

LeL eL+

If we apply this to f on the left hand side, we get

2 1
;f (0) = meas(V/L) meas(V/LL) '; 1@,

so that
1

- meas(V/L) meas(V/LL)

If L C L+ then |Lt/L| = | det(Mg)|, so

meas(V/L*Y) = | det(Mp)|'meas(V/L).
1.5. Proposition. In these circumstances self-duality is equivalent to the condition that

meas(V/L) = | det(Mp)|*/2.

Example. Let B be the bilinear form 2z;x9 + 2y;y2, whose matrix is

20

0 2|
As we shall see, it is the bilinear form associated to the quadratic form 2% + y?. Say L = Z?, then
L+ = (1/2) L. The measure on V is such that meas(L) = 2, which is to say 2 dx dy.

o ——= 0

e Now suppose F' to be a p-adic local field, ¢ again the standard additive character of F, and B a
non-degenerate (symmetric) bilinear form on the n-dimensional vector space V. If L is a lattice in V, let

Lt ={veV|y(B,L) =1}

Because B is non-degenerate, they are both lattices. They can be calculated explicitly given the matrix
Mp determined by a basis of L.

It is relevant here because of:
1.6. Lemma. Suppose f in S(V). Then

(a) the function f has support in L if and only if f is constant under translation by Lt;
(b) the function f is constant under translation by L if and only if f has support on L.

Proof. Let f be the characteristic function of v + L. Then
Flo) = [ @)i(-Bla —v.) de = 6(B(o.9) [ F@)(-B).
L L

If y is not in L then z +— ¢ (—B(x,y)) is a non-trivial character on L and the integral vanishes. 0

This leads to an explicit formula for the Fourier transform:
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1.7. Corollary. If f is constant under translation by L with supportin M O L then
{ meas(L) (X f (@)(=B(w,y))) ifyisin L+

0 otherwise.

fly) =

It is constant under translation by elements of M.

Therefore the Fourier transform of f is meas(L) times the characteristic function of L+. Tts Fourier
transform in turn is meas(L)meas(L") times the characteristic function of L. The self-dual measure is
that for which

meas(L)-meas(L) = 1.

QUADRATIC FORMS. A quadratic form () on V' is a homogeneous function of order two. It determines an
associated bilinear form

V(u,0) = Qu+v) = Qu) = Q(v).
For example, if the dimension is 1 and Q(z) = 22 then V(z,y) = 2xy.

The form is said to be non-degenerate if V is non-degenerate. This means that V(u, V') = 0 if and only
ifu=0.
e From now on, I assume () to be non-degenerate.

The group GOg, of similarities is that of all linear transformations g of V' such that

Qg(v)) = nu(9)Q(v)

for all v in V. Here g — p(g) is a homomorphism from GO to F*. If we have chosen a coordinate
system, Mg is the matrix of (), and X is the matrix of g in GO then

A MoX = u(g)Mq

which implies

(1.8) det®(g) = p"(g) -

In particular, if n is odd, £(g) is always a square in F'*.

For g in GO(Q)

(1.9) B(g(w), g(v)) = p(g)(u, v).

For a function f on V and g in GL,,(F) let [\, f](v) = f(g~ ' (v)).
1.10. Proposition. If f lies in S(V) and g in GOy, then

Agf = |/L(9)|n/2')‘g/u(g)f

Scalar multiplication is in GO(Q), and this is consistent with Corollary 1.2.

Proof. Because

Apply (1.8) . 0
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2. Fresnel integrals

Suppose F' to be an arbitrary local field, (V, Q) a nondegenerate space over F' with bilinear form V, and
1) a non-trivial additive character of F'.

2.1. Lemma. For every a in F, multiplication by ¢ (aQ(x)) f (z) is an isomorphism of S(V') with itself.

Proof of the Lemma. In the p-adic case there is no difficulty. In the real case, it follows from the fact that
the derivatives of ¥(aQ(x)) are of the form P(z)y(aQ(x)) with P a polynomial. 0

As a consequence, for every a in F' the distribution defined by the equation
((0Q)). 1) = [ f@)o(aQ(a)) do
1%

The following is a special case of Theorem 2 of §14 in [Weil:1964], and the proof is the same as his.

is tempered.

2.2. Theorem. For a # 0, the Fourier transform of the distribution v(aQ(z)) is equal to a constant
multiple of the distribution ¢(—Q(z)/a).

This is motivated by a simple calculation. Let ®(z) = ¥ (aQ(x)). Since

aQ(z —y/a) = aQ(x) — V(az,y/a) + aQ(y/a) = aQ(x) — V(z,y) + Q(y)/a

we have, at least formally,

:/¢<ag<x))w<—V<w,y))dw

D/a) [ $(Q)/a)0(aQ@)-T(e.p) da
(2.3)
(v)/a) /V $(aQ(z — y/a)) de
(v)/a) /V $(aQ(x)) dz

The problem is to make sense of the integral factor, which is called a Fresnel integral. Later on, we shall
see how to do this explicitly in different cases.

Proof. We want to prove that

/waQ 2)di = /¢ V() da

for some constant . According to Lemma 2.1, we may set f(z) = ¥(Q(z)/a)¢(z) with ¢ in S(V'), and
the equation to verify becomes

(2.4) /V $(aQ(@)) - ((Q(w)/a)p(x)) (x) dr = /V () da

for all ¢ in S(V'). To see this, according to Proposition 3.1 it has only to be shown that the left hand side
defines a translation-invariant distribution.

The Fourier transform of ()9 (Q(z)/a) is

/ e(@)(Qx)/a)p(=V(z,y) dx 1/’(_@@(9))/ e(@)p(Q(x — ay)/a) dx
\74 \%4
= ¢(_QQ(9))/ e+ ay)p(Q(z)/a) dz

%
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so that the left hand side of (2.4) is

/V (/V ez + ay)v(Q(z)/a) d:v) dy

which is manifestly a translation-invariant function of . 0

Define 7y ¢ (a) to be that scalar, under the assumption that V' is given the self-dual measure with respect
to 1. We shall see later explicit formulas for the scalar appearing in Theorem 2.2. All we can say
immediately is that |y, o (1)| = 1, since ¢(Q(x)) is the conjugate of 1»(—Q(x)). Finding a formula for R
or C, or for p-adic fields, is very different.

Formally, as we have seen, a Fresnel integral is defined to be the function

e.a(a) = /V $(aQ(x)) dr,

Later, this formula will be justified by showing that the integral is conditionally convergent.
2.5. Theorem. If v is a non-degenerate character of F' and measures are chosen to be self-dual:
(a) if @ = Q1 © Q2 thenyy @ = Vp,Q1 " V.Q2/
(b) if ¢ = p(g) for some g in GOg then vy q(cz) = |c| 7"/ ?vy 0(z);
(c) forall Q, |yy.q(a)| = |al~"/3;
(d) Y,.q() = Vpaq(x) = |al"?
(e) forallvy and Q, 731,@ =1.

Proof. In sequence:

Y, (az);

(a) The first claim is immediate from Theorem 2.2.

(b) Proposition 1.10 implies that
Ag—1® = |“(g)|7n/2)‘u(g)g*1 P

for any tempered distribution ®. Applied to ¢ (aQ(x)) with ¢ = u(g), this gives us

Y(acQ(x)) = ¢ (aQ(g(x)))”
= [1(9)| 7" *vy.0(a)(—Q(cg ') /a)
= |c| ™2y, 0(a)y(—Q(z)/ac) .

Compare this with the equation
P(acQ(@)) = y,@lac)(=Q(z)/ac).
(c) Since ¥(—aQ(x)) is the conjugate of ¥ (a@Q(x)), this follows from the equation

@) Yp.Q(=a) = la[ ™"
This is a consequence of the corollary to be proved in a moment, since Q @ (—Q) is equivalent to sum of
hyperbolic planes.
(d) These differ only because of a choice of measures. Apply (c).
(e) This will be proved later on, separately for real and p-adic fields. 0
2.6. Corollary. The quotient

senQle) = 1490

is a constant of absolute value 1 on each coset of (F*)?.
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This quotient is the signature of the form.

The hyperbolic plane is the two dimensional quadratic form H(z,y) = 2y, and a hyperbolic form of
dimension n = 2m if the direct sum of m hyperbolic planes. The matrix

o 1)

—n n/2
yo.qla) = la| 20 5 ().

is in the group GOy . Hence

Since the characteristic of F' is not equal to two, the quadratic form xy is equivalent to 2> — y%. But
Yy, —z2 is the conjugate of y,, ,2, which implies that v, (1) = 1. Hence:

2.7. Corollary. For Q a hyperbolic form of dimension n, vy g(a) = |a| /2.
As another immediate consequence of the theorem:

2.8. Corollary. In every dimension, the function 7, o(a)|a|™/? on F* is a sum of characters of order
two.

Remark. We shall also see later that for p-adic fields the function vy g (@) determines the quadratic form
completely. That is certainly not true for R since, as we shall also see later, the functions v for Y |z}
and —) 'z? are the same for all n = 0 mod 8. This is a relatively simple calculation, but there is also a
subtle reason—it is related to the existence of derivatives of the Dirac § distribution at 0 on S(R). Is it
also related to the periodicity of Clifford algebras responsible for Bott periodicity of homotopy groups?

3. Appendix. Characterization of integration

A tempered distribution on V' is a continuous linear function on S(V'). The Fourier transform of a
tempered distribution is defined by duality:

(@, f) = (@, f).

This is compatible with the embedding of S(V') into the space of tempered distributions defined by
integration. For example, suppose I to be the distribution defined by a bilinear form B and integration
with respect to the self-dual measure on V:

I, f) = /V f(v)dv.

Its Fourier transform is the Dirac delta g, since
| Fwyae= 0.
1%

Forany fin S(V)and uin V, let
Aof(2) = [z —v).

This also extends compatibly to a translation operator on tempered distribution:

<)\U(I), f> = <(I)7 A—vf)

Integration is invariant under translation. It is essentially unique:

3.1. Proposition. Any continuous linear function on (V') invariant under translation is a multiple of
integration.

Proof. The Proposition will follow from the claim that the kernel of integration is the same as the closure
of linear combinations of functions of the form A, f — f with f in S(V).
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The proof will divide into two cases. First, suppose that F' is p-adic. The Proposition will follow from
the strong assertion that the kernel of integration is equal to the space of such linear combinations.

3.2. Lemma. If f lies in S(V'), then
/ fw)dv=0
v

=3 A

in which u traverses a finite set in V, with each f,, in S(V).

if and only if

Proof. Because the Haar measure is translation-invariant

[ uni) = ) o =0,
14

This proves one half of the Proposition.

So now suppose that f liesin S(V'), with A\, f = f for all k in some compact open subset K of V. Suppose

also that
/ f(w)dv=0.
v

> fw)=0

if the support of f is U(v; + K). If char, is the characteristic function of v; + K, then char; = A, charg
and

This means that

f= Zif(Ui)Cf)ﬂti
f=2 floi)cbar; = > f(vi)chary
f= Zif(vi)()\vi‘hatx — charg) . 0

Now assume F' =R, V' = R". The strong assertion is not valid in this case, and is replaced by:

3.3. Lemma. If f lies in S(V'), then
/ fw)dv=0
v

if and only if f is a linear combination of partial derivatives 0 f;/0x;.

Proof. Since
() =ty TEF I

one half follows from invariance and continuity.

As is well known, the Fourier transform takes 0f/0x; to 2miy; f (y). The Lemma will then follow from
this:

3.4. Lemma. If f lies in S(V') then f(0) = 0 if and only if f is a sum of the form

Ziyifi

with each f; in S(V').

Proof of the Lemma. One way is easy. For the other, I shall start by proving that if f lies in S(V') and
f(z1,... ;2n-1,0) =0 then f/x,, liesin S(V).
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The proof of this claim will be induction. Say n = 1 and f(0) = 0. For each z in R let ¢, (t) = f(tx).

Then
f(x) = (pz(l) - ‘pz(o)

- [ dwa

0
1
= :C/ [ (tx) dt
0
=axfi(z).

Away from 0, say in the region |z| > 1, f1(z) = f(x)/x. This quotient and all its derivatives are rapidly
decreasing since f lies in S(V), so f1(x) also lies in S(V).

Now suppose n > 1. By induction, the restriction of f to the hyperplane x,, = 0 may be expressed as

n—1
Zl zi fi0

with each fi o in S(R"~1). Each of these may be extended to a function I'll all also call f; in S(V).
Then F = [ — 2371% fi vanishes on x,, = 0. But then the argument for the case n = 1 shows that
F(z) = zp fn(z) for some F in S(V), giving finally

f = Z?szz U

Part Il. Real Fresnel integrals
4. The classic Fresnel integral

Suppose V = R and Q(z) = 22, hence V(z,y) = 2zy. Also fix 1)(x) = ™. The Fourier transform is
now

Fw) = /R f(@)e2mev g

The corresponding self-dual measure is dx. We know from Theorem 2.2 that the Fourier transform of

LT

the tempered distribution e *is equal to 7y e~™%” for some constant ~. What is v? Formally, according
to the derivation of (2.3) , it is equal to
/ e dx
R

But this integral is only conditionally convergent, and this makes rigourous manipulations difficult.

The way around difficulties is through analytic continuation. Integration against e s a tempered

distribution for any X in C with RE(\) > 0. For RE(A) > 0 this function decreases exponentially, and in
that case finding its Fourier transform is relatively straightforward.

There are a couple of steps in this process.
Step 1. One of the simplest functions in S(R) is f(z) = e~
4.1. Lemma. The function e~ ™" is its own Fourier transform.

This amounts to another verification that the measure dx is self-dual with respect to this Fourier transform.
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Proof. We have
o0 2 . > 2 . 2 2
/ e % eQTrzmy dx :/ e~ +2mizy+y e~ ™Y dx
— 00 —00

o N2 2
_ / e—Tr(;E-l—zy) e~ ™Y dr
—00

2 o0 . 2
=e ™ / e~ (@ Hi) g

— 00

2 o0 2
=e ™ / e ™ dx.
—0o0

The substitution can be justified by a simple change of contour in C. As is well known, the Gaussian
integral in this can be computed explicitly by transferring to polar coordinates in R?:

e3¢} [e%s) [e%) 2
/ / e—ﬂ(z2+y2) dx dy _ (/ 6—71';1;2 d:c)
) e
:/ 9/ re” ™" dr
0 0
= 271'/ re ™ dr
0
/ e *ds
0

1. 0

Step 2. The next move is to apply contour integration to show that for any A with RE(A) > 0 the limit
R 2
lim e dy

R—o0 /g

exists and is equal to
1 / R i
— e x.
VA Jo
The square root here is the principal one. To be explicit, with A = cos 21 4 i sin 29 I set

VA =w =cos® +isind
with 0 < [ < 7/4.
Consider the complex integral of ¢~ over the closed path shown in the following diagram.

I<gT—= R

Rewiﬁ

It has three segments: (i) the ray from 0 to Re™; (ii) the arc of radius R from Re™ to R; the segment from
Rback to 0. The integral over the real component is

R 2
—/ e ™ dx,
0
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and as R — oo it has limit 1/2. If we set z = wz, and consequently dz = w dz, the integral over the
complex ray becomes
R
w- / e ™ dy
0

o 2
/ e ™A dy =
0

4.2. Lemma. As R goes to oo, the integral over the arc tends to 0.

We deduce that

S
RO |

if we can prove

Proof. It suffices to show that the integral over the entire arc from the ray with angle 7 /4 to 0 tends to 0.
This arc is parametrized as z = Re'("/4=%) for a ranging over [0, 7/4]. Since dz = —iz da, the integral
is thus

/4 w/4
—Z/ Ze—TrR2(Cos(7r/2—2a)+isin(ﬂ'/2—2a)) da = / Rei(ﬂ'/4—a) .e—ﬂ'R2(Cos(2a)+isin(2a)) do .
0 0

We therefore want to estimate
w/4 TR/4
/ R€7WR2 cos(2a) do = / €7R2 cos(2s/R) ds (S _ RCY) ]
0 0
Here s is arc length along the path.

Although the value of the integrand is 1 at the start of this path segment, it decreases very rapidly to 0,
and the more rapidly the larger R is. Here are the graphs of that magnitude for various R, over the range

s/R=m/4

Rigourous estimates of the integral can be made by using the estimate
cosx>1—2zx/m (0<z<m/2).
7TI2

We have seen that the Fourier transform of the Schwartz function e is itself. A simple change of

variables allows us to see that the Fourier transform of ¢~™*” for A > 0 is equal to (1/ \/X)e_”y2/ A, But

the equation
1 —mx? /A —maz? A
—\/X-<e f) = (e 2 f)

is analytic in the region RE(A\) < 0 and continuous for RE(A) < 0, so it remains true for all A with
RE(\) > 0:

4.3. Proposition. The Fourier transform of e~ ™" js (1/\/X)e*’””2/A whenever RE(A) > 0.

All of the assertions of Theorem 2.5 when I’ = R. are now straightforward, given the calculations above.
4.4. Corollary. If (x) = ™ and Q(x) = 22, then fora > 0

1+
Yo, (E£a) = —Zafl/z.
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I'll now say more about the classic Fresnel integral

.2 o0 .2
/e_””” dx:2/ e do .
R 0

o0
= 2/ (cosma? + isinwa?) dx .
0

This integral converges conditionally. Here are the graphs of the real and imaginary parts of the integrand:

Yy =CoST

y =sinx

If we set s = 22 in these integrals we get

e 9 °° cosms
cosmx” dr = / ds
J 5
> 9 * sinTs
sinmz” dv = / ds.
) .
The integrals therefore converge, by the alternating sign test. When the finite integral
R
(4.5) / e™ dx
0

is plotted as a path in the complex plane as R varies from —oo to oo, we get the familiar Cornu spiral:

The illustration agrees with the evaluation 2™/ = (1 +1i)/v/2.
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5. Anisotropic real forms

Suppose (V, Q) to be anisotropic over R—i.e. if if v # 0 then Q(v) # 0. Its spheres are compact, and
there is a geometric interpretation of Fresnel integrals.

Define the function on F'*: Q-1 (1))
meas(Q (U
= 1 e
vo(w) U meas(U)

We shall see an explicit example in a moment. For f in S(F') we have the basic equation

Lﬂwmmmzﬂj@@m%

so that vg(x) is well defined as a tempered distribution on R. It is of interest here because, at least
formally, its Fourier transform evaluated at a # 0 is

%@=Awﬂ@Mw@=ﬂwwmmwzwm@.

This formal calculation is in fact legitimate, but it doesn’t tell the whole story. The full Fourier transform
also involves derivatives of the distribution dg.

Example. Suppose @ to be the positive definite form Y 27 on R”, ¢(z) = e*™®, dz the Lebesgue
measure on V, which is self-dual. On R*

vo(y) = %g% meas

(Ql(y —2:794‘}1)) '

If I',,_1 is the volume of a unit sphere in R"”, the volume of the inverse image is

Tn:| vV y+h anl

T, 1" Vdr = Ty g — = h)™? — (y — h)"/?
" dr { )= n((y+) (y —1)"?)

/ﬁﬁ

y—h

which implies that

— anl yn/271/2 ify >0
”Q(y)_{ 0 if y < 0.

Even if n = 1 and the exponent of y is —1/2, this is integrable around 0, thus defining the distribution
vq as an integral. If x 1 are the characters of R* defined by

X+ (y) = ly|"/27!

X-(y) = sgu(y)ly["/**

then we can also express
T
v = HT(X++X7)-
Its Fourier transform is known to involve some derivative of dy. As I mentioned earlier, this is related to
the fact that the Fresnel integral does not distinguish Y z? from — 3" 27 in dimension eight.

Remark. There is a paradox implicit in these assertions. If 1 is the standard character ¢?™* on R, the
scalar vy, ,2 is equal to w = e™/*. The scalar for the sum @ of 4 squares is therefore —1. On the other
hand, that for H @ H is 1. The Fourier transform of v, () is v, which is of course a non-negative
function. That of vy g is therefore negative. Is there any way to relate it to measures on its ‘spheres’?
Perhaps by some regularization procedure?
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Part Ill. p-adic Fresnel integrals
6. p-adic Fresnel integrals

Now let F' be a p-adic field, o its ring of integers. Let (V, Q) be a strictly non-degenerate quadratic space
over F' with V' of dimension n, V be its associated bilinear form.

If I has characteristic two, the requirement that V be non-degenerate requires that V' have even dimen-
sion. In order to avoid special treatment in that case

e [ shall assume from now on that the characteristic of F' is not two.

With this assumption, the squares are open in /'* and every non-degenerate quadratic form is a sum of
one-dimensional forms.

Assign V' the Haar measure self-dual with respect to 1) and Vg. Formally, the associated p-adic Fresnel
integral defined earlier is the function

Yy,@(a) = /Vw(aQ(x)) dx .

We shall now see how to interpret this as a confitionally convergent integral.

A lattice in V' is a free o-submodule of V' of rank n. For any o-lattice L let
Lt = Anny (L) = {z € V | ¢(V(z,y)) = 1 forally € L} .

This is also a module over 0. Because V is assumed to be non-degenerate, it is a lattice in V.

6.1. Proposition. If »(aQ(L)) = 1, then for any lattice M containing a~ 'L+

[ wa@)de= [ w(aQ) s = meas(t) Y vlaQ(a).

a1L+/L
This guarantees at least that the limit

too = lip [ w(aQ) ds

exists and even expresses it as a finite sum. It also implies that v, (1) = 1if L+ = L.

Proof. Suppose Lt C M. If P(aQ(L)) =1then L C L+ C M. Letmy, ..., m, be coset representatives
for L in M. Then

/Mw@(w»dw > / $(aQ(m; + ) dz
3 / P(aQ(mi) (@ (my, 2))(aQ(x)) do

= > w(aQ(m)) /L O( (ami, 2)) dx

| v,

since by definition of L+

/ Y(V(am,z))de =0
L
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unless am is in L*. 0

6.2. Corollary. For every ¢ > 0 there exits a lattice M in V such that

o.ala) = /M $(aQ(x) da

forall |a| > e.

Up to a positive scalar measuring the ratio of two self-dual Haar measures, the function 7y, g(a) is the
same as 7y, ,0(1). I'll call the function 7y g(a) the characteristic of Q). It depends on v, but this is
usually fixed in any one discussion.

I recall from Theorem 2.5:
TQeR = VQVR

o(a)| = la| ="/
vo(px) = |p| ™" Pro (@) if p = pg.

Example. In this and the next example, let V = Q,, Q(z) = 22, L = Z,,.
At first, suppose p odd. Then L+ = L, sov(1) = 1. Butif a = p then

o 27rm2/p
v(p) = meodpe :

It is easy to see that 72 = ep with

- 1 ifp=1mod4
“ |l -1 ifp=3mod4.

A well known result of Gauss tells us that

- /P ifp=1mod4
7= v—p otherwise.

Example. Now suppose p = 2. Then L+ = (1/2)Z,. If a = 1 then

; 141
1 2mif4) )
(1 ey = L

Sl -

(a) =
Ifa=2then2 'LY /L = (1/4)Z/7 and

a _ 1 362»27rim2/167i 4, 0y 26
W) =72, = U+ = 5=V

V2

with ¢ = €2™/8. These examples are typical in that, as I shall verify later, yo(1) is always an eighth root
of unity.
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7. Anisotropic p-adic forms

One might well wonder whether g has some intuitive interpretation. The answer is that it does, at least
in certain cases.

I recall that an anisotropic quadratic space (V, Q) is one for which Q(v) = 0 only if v = 0. As is well
known, every quadratic space is a direct sum U @ nH, in which U is anisotropic. The decomposition
is unique up to equivalence. The classification of quadratic spaces thus reduces to the classification
of anisotropic spaces. This can be done by applying a tool Minkowski introduced to count points on
spheres of quadratic forms over finite fields.

7.1. Lemma. If (V, Q) is anisotropic over a p-adic field then each ball
= {v|1Q)| < C}

is compact.

Proof. Fix an arbitrary lattice L. Then Q)L — pL is compact, and by assumption (Q(v) is bounded away
from 0 on it—there exists A > 0 such that |Q(v)| > A for v in Q.

Suppose now that |Q(v)| < C. Then for some k the multiple @*V lies in (2, and hence
QW) > A, ¢ <Qv)/A< C/A.

Hence k is bounded by ¢ = (1/2) log,(C/A). Therefor |Q(v)| < C implies that v is in w ‘L. 0
This will motivate the following discussion.

DIRECT AND INVERSE IMAGES. In this sub-section, suppose V to be F", with F' a p-adic field, and @
a non-degenerate quadratic form. Let dv, du be the differential forms on V, F' determining the Haar
measures dv = |dv|, du = |du|. The map (@ is submersive except at 0, which means that at any point
v # 0in V the quotient differential form dv/du on the ‘sphere’ on which v lies is well defined.

7.2. Proposition. If f is in S(V), then for every u # 0 in F the limit

Jo-1w) (@)

U%{u} meas U

[Qu f](u) =

exists. The function defined in this way on F'* is locally constant. For ¢ in (F*)?,z # 0

|C|n/2—1

vg(cx) = vo(z).

The U in the limit are open neighbourhoods of u. Explicit formulas for the limit can be found by applying
Hensel’s Lemma.

Proof. For z € 4p p the binomial series for v/1 + z converges. For € small the inverse image of u(1+¢)*!
is therefore the direct product Q' (u) x (v/1+¢) = 0

The primary property of v is this an immediate consequence:

7.3. Corollary. For f in S(F*)
/Vf(Q(:v)) dr = /Ff(x)uQ(:C) dx

In particular, v is locally integrable on all of I, and hence defines a distribution. What is its Fourier
transform? To answer this, I have to recall something about Fourier transforms and multiplicative
characters. The integral

f%/ F@)x(z) dz/|a]
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is well defined for any character x of F'*, with f in S(F'*), and defines a x-equivariant distribution ¢,
on S(F*). In any of several ways it may be shown to extend uniquely to a x-equivariant distribution on
all of S(F), except for x equal to the trivial character. Its Fourier transform is a scalar multiple of ¢,,, 1
in which

v x— |z|.

In the exceptional case, the invariant distributions are all multiples of the Dirac dy with
{00, f) = f(0).

7.4. Theorem. Assume (V, Q) to be anisotropic. The restriction of the Fourier transform of v to F* is
equal to vy .q(—Yy).
Proof. This means that

/ F—y)voly) da = / F(@)ve.q(@) de.
F F

if f lies in S(F') with f(0) = 0. The lattice support L of f is bounded away from 0. By Corollary 6.2 we
can therefore choose M large enough in V' so that the right hand side is

/Lf(:c)< Mw(arQ(v))dv) dz.

We may also choose M large enough so that for y in the support of f the inverse image Q~'(y) (known
to be bounded) is contained in M. But then by Corollary 7.3 this expression is

/Lf(w) (/Fzﬂ(wy)m(y) dy) da:/FVQ(y)f(—y)dy- 0

What about the full Fourier transform? In dimension n the function v is a sum of characters p|z|™/2~1.
In all dimensions except two, these have as their Fourier transforms sums of other characters, so vy,
has a canonical distribution to S(F'), and these are the Fourier trnsforms of v. I'll say what happens in
dimension two in a moment. That discussion will complete the proof of:

7.5. Corollary. Two anisotropic forms are equivalent if and only if they have the same characteristic
function.

Proof. By induction on dimension. The theorem implies that if two anisotropic forms have the same
characteristic function then they have the same images in F'. One can split off a certain one-dimensional
form from each, then apply induction and Theorem 2.5. 0

Remark. Thisis the p-adic analogue of an observation of Minkowski’s in his prize memoir [Minkowski:1911] ]
in which he used an analogous trick to compute the sizes of spheres in quadratic spaces over finite fields.
Siegel applied the same trick to prove his extension of Minkowski’s formula. We can use it to compute
Y,@ explicitly for a large class of quadratic spaces, and to classify quadratic forms over F'.

DIMENSION TWO. Any quadratic form of dimension two can be written as a sum
az® + by? = a(x® + (b/a)y?
whichis aNg,p when E = F(y/—b/a. If —b/ais a square in I’ this is equivalent to the hyperbolic plane

H. In this case, we have seen that v, g(a) = |a| 1.

Otherwise, E is a quadratic field extension. By local class field theory, the image of Ng,r in F'* has
index two. Let sgn = sgnp be the non-trivial multiplicative character which is trivial on the image.

7.6. Theorem. If (V,Q) = (E, Ng,p) then vy q(ax) = sgnE/F(a)|a|_1 Y. (T).
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Proof. Suppose z in F'*, and let e be the ramification degree of E/F. Thus pp = p%. It follows from
Proposition 7.2 that

(1/e)meas(o})

vo(z) = { __meas(op) _ ifzisin NE*
0 otherwise.

As a consequence, 1/ is equal to a linear combination of 1 and sgnp /. These are both distributions,
and the Fourier transform of v will be a linear combination of their Fourier transforms, That of 1 is the
Dirac delta do, and that of sgn;,p is the principal value defined by the function sgn r|z|~1. Because

of Theorem 7.4, the function v, ¢ is a scalar multiple of sgn || -1 0
7.7. Corollary. If ) = aNg,p then
Vo = 580g/r(=1).

Proof. Because

T,-Q = sgn(=1) 7,0
but also vy, @ =7y ¢ and |yy,q| = 1. 0
7.8. Corollary. For any Q, vy,¢(1) is an eighth root of unity.

Proof. Tt suffices to show this for cz2.

Lety = 7vy,0(1). The form Q = cz? @ cx? is anon-degenerate form of dimension two, and v, (1) = 7?

Itis either the hyperbolic plane or a N/ - for some quadratic field extension. In the first case vy, (1) = 1.
In the second, because of the previous corollary, it is a fourth root of unity. 0

8. Quaternion algebras and quadratic forms

The classification of p-adic quadratic forms is closely related to the structure of quaternion algebras. I'l
begin with a discussion of quaternion algebras over general fields.

QUATERNION ALGEBRAS. For the moment, suppose F' to be an arbitrary field of characteristic other than
two, E/ F to be a separable quadratic extension algebra. This means that £ = F'[z]/P(z) in which P(z)
is a quadratic polynomial whose roots are distinct. If the polynomial P(z) factorsin F'then E = F @ F,
and otherwise E is a field.

Choose o in F'*, and let B = Bp , be the algebra over E with basis 1, o and relations

Replacing o by cca produces an isomorphic algebra, so that the algebra B depends essentially only on
the image of ain F* /(F*)2.

The field E acts on the right on this, so the identification with E2 is the map
(z,y) — x4 o0y.

Acting by multiplication on the left, B commutes with E. This gives us an embedding of B into M»(E).
Explicitly, z + oy takes
1—x+ o0y

O ——x0 + oYyo
:xa—i—a?y
=07 +ay.

In other words, if I choose o, 1 as basis A = x + oy corresponds to the matrix
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8.1. Lemma. The image of  is made up of all matrices X in My (E) such that
0 17,0 1 - »
a 0 a 0 O

In other language, this tells us that B is defined as an inner form of Ms(F).

The trace x + T of «(x + oy) defines the trace map TR from B to F. Its determinant is
NMp/p: & +0Y — T — oYy .

This lies in F', and defines the norm map from B to F. Considering E as a vector space over F/, this gives
us a non-degenerate quadratic form of dimension 4. If A is any element of B, it is a root of the quadratic
equation

2 — TR(\) 2 + NM()\) = 0.

The bilinear form V associated to NM is

(8.2) (x4 y)(T +7) = 2T — y§ = TR(YT) .

The conjugate of x + oy is T — Yo. This definition is motivated by the requirement that it be conjugation
on E and F(o).

8.3. Proposition. This conjugation is an involutory anti-automorphism.
Proof. In M5 (E) it takes
o 2= s
oy T —ay T

which is the composition of matrix transposition, conjugation by

10
0 «
and conjugation of matrix entries. 0

The norm map can be expressed as
NM(z +oy) = (z + oy)(T — Yo) = (z + oy)(z + oy).

8.4. Proposition. If « lies in NE* then B, is isomorphic to M>(F), and otherwise it is a division
algebra.

In particular, if E = F' @ F then B is isomorphic to M (F'). If E is a field, then E @ E is isomorphic to
E ® E, so that B ® K is isomorphic to M3 (K) for any extension field K/ F into which E embeds.

Proof. To prove the first claim, it suffices to do it for any element of NM(E ™).

Suppose A to be a generator of E/F, satisfying the quadratic equation
N —a\+b=0.

Take ), 1 as a basis of E/F. Since
A-l=2A

AMA=a\—b
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we get an embedding of F into My (F):

a 1
©rA— [—b O} .
But then

A=a—-)\+— [0 _1}
b a

ity

ap(No ™ =p(A) -
But b is thenorm of ), so the algebra generated by F and ¢ is the same as Bg, 1, which is hence isomorphic
to Ma(F).
If a does not lie in NE*, then NM(z) # 0 if and only if 2 = 0, and 2z # 0 has inverse Z/NM(z). 0
If E = F(y/B), the norm form on B becomes

If

then 02 = b-I and

x} — B3 — axi + afri.

Its discriminant is (o/3)? ~ 1.
p-ADIC QUATERNION ALGEBRAS. Now suppose [ to be a p-adic field.
If B is a division algebra, define an integer in B to be a z such that NM(z) is in 0.

8.5. Proposition. Suppose I to be the unramified quadratic extension of I, and o = wp, ¢ the associated
embedding of B into M(E). Then z = x + oy is an integer in B if and only if x, y are in o .

In particular, the integers in B form a ring.

8.6. Proposition. If B is a division algebra, then

Yyu(a) = —|af?

for all a in F'*, and NM is surjective.
What is vy, nu?
Proof. Well,
NM = Ng/p ® —aNg/p
so that by Corollary 7.7
@)Yy, ~aNg,r (@)
a)sgn(—a)
— Ja|"2sgn?(—1)sgn(a)

Yypm(a) = ”Yw-,NE/F(
_ A2
= Yy,Ng /F (
= —|CL|2 .
This is independent of E. Furthermore, it implies that vg(a) = |a] for all a, which proves the second

claim. 0

8.7. Proposition. Up to equivalence, there are exactly two quadratic forms of dimension four with
discriminant 1, H ® H and a unique anisotropic form.

Proof. This is because every form of discriminant 1 is the norm form of some quaternion algebra, which is
either M3 (F) or anisotropic. In the second case, all are equivalent, since they all have the same function
M. 0



Quadpratic forms over local fields 22

8.8. Corollary. There is up to isomorphism exactly one quaternion division algebra over F'.
Proof. Fix E and « such that Bg , is a division algebra.

Let B be any quaternion division algebra. By Proposition 8.6, the norm of B is surjective. Therefore
B is equal to the orthogonal sum of 2% and its restriction to the elements of B with trace 0. So is the
analogous restriction form for B . These two restrictions are equivalent, since their characteristics are
the same. So B also contains an embedded copy of E, which implies that B and B ,, are isomorphic. [J

9. Classification of p-adic quadratic forms

In this section I'll complete the classification of p-adic quadratic forms. As I have already mentioned,
this reduces to the classification of anisotropic forms, which I now list.

Dimension one. These are the forms Q(z) = cz?, where ¢ ranges over representatives of F'* /(F*)2.
The function v is the characteristic function of one coset of this group in F'*, and is therefore equal to
some explicit linear combination of quadratic characters of /. This leads to an expression for vy ¢ as
a similar linear combination whose coefficients are the root numbers occurring in Tate’s local functional
equation. The only simple fact is that vy (1) is an eighth root of unity.

Dimension two. The anisotropic forms of dimension two are the () = ¢ Ng,r, where E ranges over the
quadratic field extensions of F’ and c over representatives of F'* /N (E*). The function 7y ¢ satisfies the
equations

'712%@(1) =sgng,p(—1)
Yo,Q(a) = SgnE/F(“)’Y%Q(U .
The function ey, . is a positive multiple of the characteristic function of one coset of N (£ ) in F'*.

Dimension four (a). There is exactly one anisotropic form of dimension four, the norm of the unique
quaternion algebra B over F. The function vy ¢ is equal to —|z| 2, and v = |z|. In particular, as I have
already noted, the image of v, is all of I

this contrastS with the form H & H, for which v, o = |z| 2.
Inboth cases, the functions 7y, o /|#|? are invariant under multiplication, and sgny, is the trivial character.

Dimension three. Suppose (V, Q) to be an anisotropic quadratic space of dimension three, say of
discriminant d. The orthogonal sum ) + dz? has discriminant 1. It cannot be H @ H, so it must be
equivalent to the norm formof the quaternion algebra. Therefore g = —7;;2 || =2, and two such forms
with the same discriminant are equivalent.

On the other hand, suppose d given. I claim that we can choose a, b, ¢ such that
az® — aby® — cz*> = aNp/p ® (—c2?)

with £ = F (\/1—7) is anisotropic and has discriminant d. For this we require that (1) d = a?bc and (2) b
is not a square in F'*, and (3) ¢ is not in aN (E* ). For this, choose b to be element of F'* that is not a
square. Then choose a such that db=1(F*)? is contained in aN E*. Finally, set c = db~*a 2.

All in all:

9.1. Proposition. The map assigning to () its discriminant induces a bijection of equivalence classes of
anisotropic quadratic forms of dimension three with F'* /(F*)2.

Dimension four (b). Now suppose that () is of dimension four but does not have discriminant 1. In this
case, it must be isotropic.

Why? Suppose
Q=ct’®R,

with R of dimension three, does not have discriminant 1. If R is isotropic we are through. So suppose
R to be anisotropic. The condition on the discriminant and the discussion of the three-dimensional case
then tells us we can find an isotropic vector for Q.
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Hence any quadratic form () of dimension four and non-trivial discriminant is of the form

where F is distinguished by the discriminant of ), and « is taken modulo NE*. Again, forms are
distinguished by their characteristics.

In this case, the signature character is sgnp /p.
Dimensions more than four.
9.2. Proposition. All quadratic forms of dimension more than four are isotropic.

Proof. 1t suffices to show this when the dimension is five. Suppose Q = R & cz?. If R does not have
discriminant 1, then it is isotropic, and so is (). Otherwise, it is either i 2 or the norm of a quaternion
division algebra. In either case, the image of R is all of F'*, so there exists = such that R(z) = —¢,and
( is again isotropic.

One conclusion that we can see in retrospect is:

9.3. Proposition. Two quadratic forms over I' are equivalent if and only if their characteristics are the
same.

GO(Q). Suppose V to have even dimension, and let g be its signature character.

9.4. Proposition. In even dimension, the image of the homomorphism p from GOgq to F'* is a coset of
the subgroup in which xg = 1.

Proof. If x(a) = 1, then a@ and @ have the same characteristic, so that (V, Q) and (V, aQ) are isomorphic.
But this means that there exists g in GOg with p(g) = a.
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