Introduction to admissible representations of \(p \)-adic groups

Bill Casselman
University of British Columbia
cass@math.ubc.ca

The structure of \(GL(n) \)

The structure of arbitrary reductive groups over \(p \)-adic fields is an intricate subject. But for \(GL_n \), although things are still not trivial, results can be verified directly. One reason for doing this is to motivate the abstract definitions to come, and another is to make available at least one example for which the theory is not trivial and for which the abstract theory is not necessary.

An important role in representation theory is played by the linear transformations which just permute the basis elements of a vector space, and I therefore begin this chapter by discussing these as well as permutations in general.

Next, I’ll look at the groups \(GL_n(k) \) and \(SL_n(k) \) for an arbitrary coefficient field \(k \). This is principally because at some point later on we shall want to make calculations in the finite group \(GL_n(\mathbb{F}_q) \) as well as the \(p \)-adic group \(GL_n(\mathbb{Q}_p) \). But also because procedures to deal with \(p \)-adic matrices are very similar to those for matrices over arbitrary fields.

Then, in the third part of this chapter I’ll let \(k = \mathbb{Q}_p \) and look at the extra structures that arise in \(GL_n(\mathbb{Q}_p) \) and \(SL_n(\mathbb{Q}_p) \). Much of this is encoded in the geometry of the buildings attached to them, which will be introduced later.

In any \(n \)-dimensional vector space over a field \(k \), let \(e_i \) be the \(i \)-th basis element in the standard basis \(e \) of \(k^n \). Its \(i \)-coordinate is 1 and all others are 0.

Contents

I. The symmetric group
 1. Permutations
 2. The geometry of permutations

II. The Bruhat decomposition
 3. Permutations in \(GL_n \)
 4. Gauss elimination and Schubert cells
 5. Calculating with the Bruhat normal form
 6. The Bruhat order
 7. Parabolic subgroups
 8. Flags

III. \(p \)-adic fields
 9. Lattices
 10. Volumes
 11. Iwahori subgroups

Part I. The symmetric group
1. Permutations

Let $I = [1, n]$. A permutation of I is just an invertible map from I to itself. The permutations of I form a group S_I, also written as S_n.

There are several ways to express a permutation σ. One is just by writing the permutation array $[\sigma(i)]$. Another is as a list of cycles. For example, the cycle $(i_1 \mid i_2 \mid i_3)$ takes

$$i_1 \mapsto i_2$$
$$i_2 \mapsto i_3$$
$$i_3 \mapsto i_1.$$

If σ is a permutation of I then σ is said to invert (i, j) if $i < j$ but $\sigma(i) > \sigma(j)$. These can be read off directly from the permutation array of σ—one first lists all $(\sigma(1), \sigma(i))$ with $1 < i$ and $\sigma(1) > \sigma(i)$, then all similar pairs $(\sigma(2), \sigma(i))$, etc. This requires $n(n-1)/2$ comparisons.

A transposition just interchanges two of the integers in I, and each elementary transposition $(j) = (j \mid j+1)$ interchanges two neighbouring ones.

1.1. Lemma. (a) The only permutation with no inversions is the identity map;
(b) if σ is any permutation other than the trivial one, there exists i such that $\sigma(i) > \sigma(i+1)$;
(c) an elementary transposition $(j \mid j+1)$ inverts only the single pair $(j, j+1)$;
(d) there are just as many inversions of σ as of its inverse;
(e) there is a unique permutation which inverts every pair and hence has $n(n-1)/2$ inversions.

Proof. To prove (a), it suffices to prove (b). Suppose $\sigma(i) < \sigma(i+1)$ for all $i < n$. If $k_i = \sigma(i+1) - \sigma(i)$ then $\sigma(n) - \sigma(1) = \sum_{i=1}^{n-1} k_i$, but since also $1 \leq \sigma(1)$, $\sigma(n) \leq n$ we must have all $k_i = 1$.

For (c), the pairs (j, k) with $j < k$ can be partitioned into those with (i) neither j nor k equal to i or $i+1$; (ii) $j < i$ or $j < i+1$; (iii) $i < k$ or $i+1 < k$; (iv) $i < i+1$. The transposition (i) inverts only the last pair.

For (d), σ inverts (i, j) if and only if σ^{-1} inverts $(\sigma(j), \sigma(i))$.

For (e), take $\sigma(i) = n - i + 1$.

Every simple cycle may be written as a product of transpositions:

$$(i_1 \mid i_2 \mid i_3 \mid \ldots \mid i_{m-1} \mid i_m) = (i_1 \mid i_2)(i_2 \mid i_3)\ldots(i_{m-1} \mid i_m).$$

In particular, if j and k are neighbours—i.e. if $k = j \pm 1$—then $(j)(k)$ is a cycle of order three, but otherwise (j) and (k) commute and the product has order two:

$$(j)(i+1) = (i \mid i+1)(i+1 \mid i+2) = (i \mid i+1 \mid i+2)$$
$$(j)(k) = (j \mid j+1)(k \mid k+1)$$
$$= (k)(j).$$

Since every cycle may be expressed as a product of transpositions and every permutation may expressed as a product of cycles, every permutation may also be expressed as a product of transpositions. Something stronger is in fact true:

1.2. Proposition. (a) The group S_n is generated by the elementary transpositions;
(b) the minimal length $\ell(\sigma)$ of an expression for the permutation σ as a product of elementary transpositions is equal to the number of its inversions.

Proof. Suppose σ to be a permutation other than the trivial one. Read along in the array $(\sigma(i))$ until you find an inversion, $\sigma(i) > \sigma(i+1)$. Let $\tau = \sigma(i)$. The array $(\tau(j))$ is the same as that for σ, except that the positions of $\sigma(i)$ and $\sigma(i+1)$ have been swapped. So the number of inversions for τ is exactly one less than
for \(\sigma \) itself—we have removed precisely the pair \((i, i + 1)\) from the inversion list. We can keep on applying these swaps, at each point multiplying on the right by an elementary transposition. The number of inversions decreases at every step, and hence it must stop. It does this when the permutation we are considering is the trivial one. So we get an equation

\[
\sigma \langle i \rangle \ldots \langle i_n \rangle = I, \quad \sigma = \langle i_n \rangle \ldots \langle i_1 \rangle.
\]

This argument says that if \(I(\sigma) \) is the set of inversions of \(\sigma \) and \((i, i + 1)\) is one of them, then

\[
I(\sigma \langle i \rangle) = I(\sigma) - \{(i, i + 1)\},
\]

and \(\sigma \) may hence be written as a product of \(|I(\sigma)|\) elementary transpositions. The converse is just as simple—if \((i, i + 1)\) is not in \(I(\sigma) \) then it is one for \(\sigma \langle i \rangle \), so that

\[
I(\sigma \langle i \rangle) = I(\sigma) \cup \{(i, i + 1)\}.
\]

This together with the previous equation imply that

\[
|I(\sigma)| \leq \ell(\sigma).
\]

This proof is, in effect, the well known bubble sort algorithm for sorting an array.

In the next section I’ll exhibit a geometric explanation for the relationship between \(\ell(\sigma) \) and \(I(\sigma) \).

2. The geometry of permutations

If \(k \) is an arbitrary field, the group \(S_n \) acts on the \(n \)-dimensional vector space \(k^n \) by permuting basis elements:

\[
\sigma: \varepsilon_i \mapsto \varepsilon_{\sigma(i)}.
\]

Its matrix is that with the corresponding permutation of the columns of \(I \). Thus

\[
\sigma \left(\sum x_i \varepsilon_i \right) = \sum x_i \varepsilon_{\sigma(i)} = \sum x_{\sigma^{-1}(i)} \varepsilon_i.
\]

In other words, it also permutes the coordinates of a vector. We thus have an embedding of \(S_n \) into \(\text{GL}_n(k) \).

A transposition \((i \mid j)\) swaps coordinates \(x_i \) and \(x_j \), hence has determinant \(-1\). If a permutation can be represented as a product of \(\ell \) transpositions then its sign is \((-1)\ell\).

Now let \(k = \mathbb{R} \) and \(V = \mathbb{R}^n \). Assign to it the usual Euclidean inner product. Let \(\alpha = \alpha_{i,j} \) be the linear function \(x_i - x_j \) on \(V \), and let \(\alpha^\vee \) be the vector in \(v \) associated to it by Euclidean duality—it has \(i \)-th coordinate \(1 \), \(j \)-coordinate \(-1 \), and

\[
\langle \alpha, v \rangle = \alpha \cdot v
\]

for all \(v \) in \(V \). Let \(\alpha_i = \alpha_{i,i+1} \) for \(i = 0, \ldots, n - 1 \). For reasons connected to the structure of the group \(\text{GL}_n \), the \(\alpha_{i,j} \) are called roots, and the \(\alpha_i \) are called elementary roots. The ones with \(i < j \) are called positive roots. For \(i < j \) we have

\[
\alpha_{i,j} = \alpha_i + \cdots + \alpha_{j-1}.
\]

The orthogonal projection of a vector \(v \) onto the line through \(\alpha^\vee \) is

\[
\left(\frac{\alpha^\vee \cdot v}{\alpha^\vee \cdot \alpha^\vee} \right) \alpha^\vee = \left(\frac{\alpha^\vee \cdot v}{2} \right) \alpha^\vee.
\]
The transposition \(s = (i \mid j) \) amounts to orthogonal reflection in the root hyperplane \(x_i = x_j \) or \(\alpha_{ij} = 0 \):

\[
rs = v - (\alpha^\vee \cdot v)\alpha^\vee = v - \langle \alpha, v \rangle \alpha^\vee.
\]

The coordinates of any vector may be permuted to a unique non-decreasing array. In other words, the region \(x_1 \geq x_2 \geq \ldots \geq x_n \) is a fundamental domain for \(\mathfrak{S}_n \) in \(\mathbb{R}^n \). This is the same as the region where \(\alpha_i \geq 0 \) for \(0 \leq i \leq n \), and its walls are open subsets of the root hyperplanes \(\alpha_i = 0 \). Its faces \(C_\Theta \) are parametrized by subsets \(\Theta \subseteq \Delta = \{0, \ldots, n-1\} \)—to \(\Theta \) corresponds the face where \(\alpha_i = 0 \) for \(i \) in \(\Theta \), otherwise \(\alpha_i > 0 \). The open cone itself is \(C_\emptyset \).

Any vector in \(v \) is the permutation of a vector in a unique face of \(C \). The vector space \(V \) is therefore partitioned into transforms of these faces labeled by subsets of \(\Delta \). The transforms of \(C = C_\emptyset \) are the connected components of the complement of the root hyperplanes. They are called chambers of the partition. Every face of a chamber is the transform by \(\mathfrak{S}_n \) of a unique face \(C_\Theta \) of \(C \), and in particular every wall is the transform of some unique \(C_\alpha \). A root \(\lambda \) is positive if and only if \(\lambda > 0 \) on \(C \).

Every root \(\lambda \) corresponds to a hyperplane \(\lambda = 0 \), and conversely, every such root hyperplane is the zero set of two roots, exactly one of which is positive. A root \(\lambda \) separates \(C \) and \(\sigma(C) \) if and only if \(\lambda(C) > 0 \) and \(\lambda(\sigma(C)) < 0 \), or equivalently if and only if \(\lambda > 0 \) and \(\lambda^{-1}(\lambda) < 0 \).

2.1. Proposition

Suppose \(\sigma \) to be a permutation and \(i < j \). The following are equivalent:

1. \(\sigma \) is negative;
2. \(\alpha_{ij} = 0 \) separates \(C \) from \(\sigma(C) \);
3. \(i, j \) is an inversion for \(\sigma \).

Proof

(a) and (b) are equivalent by definition. As for the remaining equivalence, the vector

\[
\rho = (n, n-1, \ldots, 2, 1)
\]

lies in \(C \), so \(\lambda < 0 \) if and only if \(\langle \lambda, \rho \rangle < 0 \). The \(i \)-th coordinate of \(\rho \) is \(n - i + 1 \). But then

\[
\langle \sigma(\alpha_{ij}), \rho \rangle = \langle \alpha_{ij}, \sigma^{-1}(\rho) \rangle
= (n - \sigma(i) + 1) - (n - \sigma(j) + 1)
= \sigma(j) - \sigma(i)
\]

so that \(\sigma(\alpha_{ij}) < 0 \) if and only if \(\sigma(i) > \sigma(j) \).}

In other words, the number of inversions for \(\sigma \) is exactly the same as the number of root hyperplanes separating \(C \) from \(\sigma(C) \). To understand more precisely how geometry explains that the length of \(\sigma \) is the cardinality of \(|I(\sigma)| \) we must find a geometric interpretation for products of elementary transpositions.

This involves the notion of galleries. Two chambers are neighbours if they are distinct and share a wall. The neighbours of \(C \) are the \(sC \) for \(s = (i) \). If \(w \) is an arbitrary permutation, then \(wC \) and \(wsC \) are neighbours, and all are of this kind. If \(s_1, s_2, \ldots \) is a sequence of elementary transpositions, then \(C, s_1, s_2, s_3C \), etc. is a chain of neighbouring chambers. A gallery is a chain of neighbouring chambers. Elements of \(\mathfrak{S}_n \) transform one gallery into another. The wall separating \(wC \) and \(wsC \) is the \(w \)-transform of \(\alpha_s = 0 \), hence the root hyperplane \(\lambda = 0 \) where \(\lambda = ws_\alpha \). If \(wC \) is its terminal chamber the gallery corresponds to an expression for \(w \) as a product of elementary reflections.

2.2. Proposition

Reduced expressions correspond to galleries that cross any given root hyperplane at most once.

Proof

Suppose we are given a gallery that crosses a hyperplane twice—say the first crossing is from \(xC \) to \(xsC \) while the second is back again from \(xsyC \) to \(xsytC \). Applying \(x^{-1} \) to this segment, we see that we have a gallery from \(C \) to \(sytC \). The two galleries \(syC \) and \(sytC \) are neighbours, by assumption separated by the same hyperplane, must therefore be the root hyperplane \(\alpha_s = 0 \). Reflection by \(s \) must therefore interchange
them, so \(syC \) and \(yt \) are the same chamber, hence \(sy = yt \), \(syt = y \), and the gallery with intermediate segment from \(xC \) to \(xytC \) has the same terminal as the original, but has length 2 less. So the original expression was not reduced.

On the other hand, any gallery from \(C \) to \(uC \) must cross every separating hyperplane, so the length is at least the number of such hyperplanes.

Later on, I shall need a certain factorization of permutations different from that by elementary transpositions. For \(1 \leq i \leq n \) let \(W_i \) be the subgroup of \(\mathfrak{S}_n \) made up of \(\sigma \) with (a) \(\sigma(j) = j \) for \(j < i \) and (b) \(\sigma(j) < \sigma(k) \) for \(i < j < k \leq n \). In other words, the array \(\{\sigma(i)\} \) is trivial up to \(i \), non-decreasing beyond it. In particular, the group \(W_{n-1} \) is just the group of permutations of \(\{n - 1, n\} \).

2.3. Proposition. The map \(\sigma \mapsto \sigma(i) \) is a bijection of \(W_i \) with \([i, n] \).

Proof. The condition on \(\sigma(j) \) for \(j < i \) means that the map from \(W_i \) into the group of permutations of \([i, n] \).

Given that \(\sigma(i) = k \), there is then a unique increasing sequence of the remaining numbers \(\ell \neq k \) in \([i, n] \), so that there exists exactly one \(\sigma \) in \(W_i \) mapping \([i + 1, n] \) into that sequence and taking \(i \) to \(k \).

2.4. Corollary. Every \(\sigma \) in \(\mathfrak{S}_n \) may be expressed as a unique product

\[
\sigma = \sigma_1 \ldots \sigma_n
\]

with \(\sigma_i \) in \(W_i \).

Proof. Given \(\sigma \), the Proposition tells us that exists a unique \(\sigma_1 \) in \(W_1 \) with \(\sigma_1(1) = \sigma(1) \). Then \(\sigma \sigma_1^{-1} \) fixes 1. There exists a unique \(\sigma_2 \) in \(W_2 \) with \(\sigma_2(i) = \sigma \sigma_1^{-1}(i) \) for \(i = 1, 2 \). Etc.

Part II. The Bruhat decomposition

3. Permutations in \(\text{GL}(n) \)

The matrix \(w_\sigma \) of the linear transformation associated to \(\sigma \) is the **permutation matrix** with \(i \)-th column equal to \(e_{\sigma(i)} \). Thus

\[
(w_{\sigma \text{permutation}})_{i,j} = \begin{cases} 1 & \text{if } i = \sigma(j) \\ 0 & \text{otherwise}. \end{cases}
\]

If \(m = (m_{i,j}) \) is an \(n \times n \) matrix then multiplication on the left by the permutation matrix \(w \) permutes its rows, and multiplication on the right permutes its columns. Explicitly:

\[
(w_\sigma m)_{i,j} = m_{\sigma^{-1}(i),j} \\
(m w_\sigma)_{i,j} = m_{i,\sigma(j)}
\]

and hence

\[
(w_\sigma mw_\sigma^{-1})_{i,j} = m_{\sigma^{-1}(i),\sigma^{-1}(j)}
\]

Conjugation by a permutation matrix permutes the diagonal entries of a diagonal matrix. Conversely, suppose that conjugation by \(x \) leaves stable the group of diagonal matrices. This means that \(xa x^{-1} = b \) is diagonal for all diagonal \(a \). Thus \(xa = bx \). In the \(2 \times 2 \) case, for example, we would have

\[
\begin{bmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{bmatrix} \begin{bmatrix} a_1 & 0 \\ 0 & a_2 \end{bmatrix} = \begin{bmatrix} a_1 x_{1,1} & a_2 x_{1,2} \\ a_1 x_{2,1} & a_2 x_{2,2} \end{bmatrix}, \quad \begin{bmatrix} b_1 & 0 \\ 0 & b_2 \end{bmatrix} \begin{bmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{bmatrix} = \begin{bmatrix} b_1 x_{1,1} & b_1 x_{1,2} \\ b_2 x_{2,1} & b_2 x_{2,2} \end{bmatrix}.
\]

Then \(x_{i,j} a_j = b_i x_{i,j} \) for all \(i, j \). Since \(x \) is non-singular, in every row of \(x \) there exists at least one entry \(x_{i,j} \neq 0 \). Thus for all \(i, j \) we have

\[
a_j x_{i,j} = b_i x_{i,j} \\
a_{j(i)} x_{i,j(i)} = b_i x_{i,j(i)} \\
ap_{j(i)} = b_i
\]

where

\[
\left(\frac{a_j}{a_{j(i)}} \right) x_{i,j} = x_{i,j}
\]
We are free to choose the a_j arbitrarily, so we see that $x_{i,j} = 0$ for $j \neq j(i)$. Therefore in each row only one entry is non-zero. In short, x is the product of permutation and diagonal matrices. All in all:

3.1. **Proposition.** If A is the group of diagonal matrices in $G = \text{GL}_n$ then the permutation matrices induce an isomorphism of \mathfrak{S}_n with $N_G(A)/A$.

The contents of this section elaborate in a special case what a later chapter will say about **root systems**. The group A acts by conjugation on the Lie algebra of GL_n, which is the vector space of matrices M_n. It acts trivially on the diagonal matrices, and the complement decomposes into a direct sum of A-stable spaces $M_{i,j}$ ($i \neq j$) spanned by the single matrix $e_{i,j}$ with a single non-zero entry in row i, column j. The corresponding eigencharacter is a_i/a_j. Let $X^*(A)$ be the lattice of characters of A, the algebraic homomorphisms from A to the multiplicative group G_m. It has as basis the characters

$$\varepsilon_i : a \mapsto a_i.$$

Multiplication of characters is written additively—the character $a \mapsto a_i/a_j$ is $\lambda_{i,j} = \varepsilon_i - \varepsilon_j$.

Assign $V = X^*(A) \otimes \mathbb{R}$ the Euclidean norm in which the ε_i form an orthonormal basis. Let α_i for $1 \leq i < n$ be the root $\varepsilon_{i+1} - \varepsilon_i$. Every root can be written as a unique integral combination of the α_i. The **dominant root** is

$$\tilde{\alpha} = \sum_{1 \leq i < n} \alpha_i = (1, \ldots, 1).$$

The vector ρ lies in what is in these circumstances the **positive chamber** where all $\alpha_i \geq 0$ or equivalently

$$x_1 \leq x_2 \leq \ldots \leq x_n.$$

To each root $\lambda = \lambda_{p,q}$ corresponds an embedding, which I express as λ^\vee in spite of the obvious conflict, of SL_2 into GL_n. The matrix

$$x = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

has as image the matrix y with

$$y_{i,j} = \delta_{i,j} \quad \text{unless } \{i,j\} = \{p,q\}$$

$$y_{p,p} = a, \quad y_{p,q} = b, \quad y_{q,p} = c, \quad y_{q,q} = d.$$

The conflict of notation is that λ^\vee now denotes an embedding of both the multiplicative group and of SL_2 into GL_n. The two uses are at least weakly consistent, since the embedding of the multiplicative group can be factored through SL_2. At any rate, there will be no serious problem since the two maps λ^\vee can be distinguished by what sort of things they are applied to. (This is called **operator overloading** in programming.)

4. **Gauss elimination and Schubert cells**

A rectangular matrix x is said to be in **permuted column echelon form** if it has the following two properties:

- every column has at least one non-zero entry, and the last non-zero entry in each column is 1;
- all entries to the right of the last non-zero entry in column i are zero.

Suppose x to be a matrix of dimensions $n \times c$. Let σ be the map from $[1, c]$ to $[1, n]$ such that the last non-zero entry in column i is in row $\sigma(i)$. In these circumstances, the map σ is called the row assignment of x. The second property above is that $x_{i,j} = 0$ for $j > \sigma(i)$. It is easy to see that
• if $c = 1$, the matrix x will be in permuted column echelon form if and only if its last non-zero entry is 1;
• if $c > 1$, it will be in permuted column echelon form if and only if (i) the matrix of its first $c - 1$ columns, which I call its prefix matrix, is in permuted column echelon form; and (ii) the last non-zero entry in column c is 1, and $a_{\sigma(i),c} = 0$ for $1 \leq i < c$, where σ is the row assignment of the prefix matrix.

Hence that if an $n \times c$ matrix is in permuted column echelon form then its row assignment is injective and its columns are linearly independent.

The matrices of permuted echelon form may be classified roughly by the row assignment, the embedding σ of $[1, c]$ into $[1, n]$. Given σ, the conditions on a matrix with row assignment σ are:

* $a_{\sigma(j),j} = 1$;
* $a_{i,j} = 0$ for $i > \sigma(j)$;
* $a_{\sigma(j),k} = 0$ for $k > j$.

Among invertible 3×3 matrices, for example, we have the following types (where an asterisk is an arbitrary entry):

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
* & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
1 & 0 & 0 \\
0 & * & 1 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
* & * & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}, \begin{bmatrix}
* & 1 & 0 \\
* & 0 & 1 \\
* & 1 & 0
\end{bmatrix}, \begin{bmatrix}
* & * & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{bmatrix}.
\]

Here is the basic result of this section:

4.2. Theorem. If M is an $n \times c$ matrix of column rank c, then there exists a unique matrix in permuted column form which can be obtained from M by multiplying on the right by an invertible upper triangular matrix.

Of course the upper triangular matrix is also unique.

Proof. Multiplying on the right by an invertible upper triangular matrix amounts to performing some combination of these two elementary column operations: (a) multiplying a column by a non-zero constant, or (b) adding to (or, of course, subtracting from) one column a multiple of a previous one. For example

\[
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix} = \begin{bmatrix}
a & ax + b \\
c & cx + d
\end{bmatrix}.
\]

The proof of both existence and uniqueness is by induction on the number of columns c. If $c = 1$ then we multiply the first column by the inverse of the last non-zero entry in that column. This is certainly the only way to turn M into permuted column echelon form.

Suppose M to have $c > 1$ columns, and that we have modified the first $c - 1$ columns into permuted echelon form. We first subtract from the c-th column suitable multiples of the first $c - 1$ columns to get condition (b) satisfied for the entries in the last column. Then we multiply the last column by the inverse of the last non-zero entry. This gives existence.

For uniqueness, this is trivial if $c = 1$. Otherwise, let V_i be the vector subspace spanned by the first i columns of M. The subspaces V_i remain invariant under right multiplication by an upper triangular matrix. Assume inductively that the first $c - 1$ columns of the final matrix are uniquely determined. The column vector x we calculate for the c-th column is then determined up to scalar multiplication by the conditions (a) that $x_i = 0$ if $i > \sigma(j)$ (b) x is in V_c. The normalization condition then determines it uniquely.

Suppose M to be an invertible $n \times n$ matrix in permuted column echelon form, and that the last non-zero entry in column j is in row $\sigma(j)$. The map $j \mapsto \sigma(j)$ is a permutation σ of $[1, n]$, and the matrix w_σ will also be in permuted column echelon form. Since multiplication on the left by a unipotent upper triangular matrix...
amounts to adding to various rows linear combinations of subsequent rows, it is simple to see that we can multiply \(M \) by an upper triangular matrix to obtain \(w_\sigma \). Therefore:

4.3. Corollary. If \(M \) is an invertible \(n \times n \) matrix, it may be factored uniquely as \(sp \), with \(s \) in permuted column echelon form and \(p \) upper triangular.

I shall now reformulate this slightly by characterizing differently the matrices in permuted column echelon form.

The form of a matrix in permuted echelon form associated to a permutation matrix \(w_\sigma \) suggests multiplying it on the right with the inverse \(w_\sigma^{-1} \). For example

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix} * & * & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\]

This suggests that in these circumstances \(xw_\sigma^{-1} \) will always be an upper triangular unipotent matrix. We can in fact specify just what kind of a unipotent matrix it will be.

Let \(N \) be the group of upper triangular unipotent matrices, \(\overline{N} \) that of lower triangular unipotent matrices, and for any permutation matrix \(w = w_\sigma \) let

\[N_w = N \cap w \overline{N} w^{-1} \]

In other words, the upper triangular unipotent matrix \(n \) lies in \(N_w \) if and only if the matrix \(w^{-1}nw \) lies in \(\overline{N} \). Since \((w^{-1}nw)_{i,j} = n_{\sigma(i),\sigma(j)} \), this means in all

\[n_{i,i} = 1 \quad (a) \]
\[n_{i,j} = 0 \quad \text{if } i > j \quad (b) \]
\[(w_\sigma^{-1}nw_\sigma)_{i,j} = n_{\sigma(i),\sigma(j)} = 0 \quad \text{if } i < j \quad (c) \]

and hence

\[n_{i,j} \neq 0 \quad \text{implies that } i < j \quad \text{and } \sigma^{-1}(i) > \sigma^{-1}(j) . \]

In other words, the non-zero \(n_{i,j} \) are among those where \((i, j)\) is an inversion of \(\sigma^{-1} \). The dimension of \(N_w \) is therefore equal to \(\ell(\sigma^{-1}) = \ell(\sigma) \). For example, \(N_1 \) is trivial, whereas \(N_{w_\sigma} \) is all of \(N \).

4.4. Proposition. An invertible \(n \times n \) matrix \(x \) is in permuted column echelon form with \(\sigma \) as its associated permutation if and only if \(xw_\sigma^{-1} \) lies in \(N_w \).

Proof. Suppose for the moment that \(x = (x_{i,j}) \) is any matrix, \(\sigma \) a permutation. Then \(y = xw_\sigma^{-1} \) is obtained by permuting columns of \(X \), and more precisely

\[y_{i,j} = x_{i,\sigma^{-1}(j)} . \]

The conditions that \(x \) is in permuted column form are

\[x_{\sigma(j),j} = 1 \quad (a') \]
\[x_{i,j} = 0 \quad \text{if } i > \sigma(j) \quad (b') \]
\[x_{i,j} = 0 \quad \text{if } i = \sigma(k) \text{ and } j > k \quad (c') \]

which are exactly the equivalents of (a)–(c) for \(y \).

4.5. Proposition. (Bruhat decomposition) Let \(P \) be the group of upper triangular matrices. Every element of \(\text{GL}_n \) may be factored uniquely as \(nw_\sigma p \) with \(\sigma \) in \(\mathfrak{S}_n \), \(n \) in \(N_w \), and \(p \) in \(P \).
Proof. Uniqueness follows from the previous result, Theorem 4.2, but it can also be shown directly. It comes down to showing that if \(u \) and \(v \) are upper triangular matrices and \(w_1 \) and \(w_2 \) permutation matrices such that \(w_1^{-1}uw_2 = v \), then \(w_1 = w_2 \).

Let \(w_1 = w_{\sigma r} \). Then

\[
v_{i,j} = u_{\sigma_1(i), \sigma_2(j)}
\]

and \(u \) and \(v \) are both upper triangular matrices with non-zero diagonal entries. Therefore

\[
\sigma_1(i) \geq \sigma_2(i), \quad \sigma_2^{-1}\sigma_1(i) \geq i
\]

for all \(i \) which implies that \(\sigma_2^{-1}\sigma_1 \) is trivial.

We shall other reasons for uniqueness later on.

I call the expression \(x = uw_p \) the **Bruhat normal form** of \(x \).

5. Calculating with the Bruhat normal form

The previous section tells us that every element of \(G = GL_n \) can be expressed uniquely as \(g = nwp \) with \(w \) in \(W \) and \(n \) in \(N \). This representation of elements of \(G \) can be used as a convenient normal form, the **Bruhat normal form**. In particular, all group operations can be carried out strictly in terms of it. This is especially important since the same technique works for all reductive groups, when a good matrix representation might not be available.

One consequence of the Bruhat decomposition is that \(G \) is generated by \(P \) and \(W \). Multiplication in the group comes down to a few questions. Suppose we are given \(g = nwp \). (a) For \(p_\alpha \) in \(P \), what is \(p_\alpha g \)? That's too easy. The important point is that the product will lie again in \(N_wP \). (b) Given \(w \) in \(W \), what is \(wgp \)? In particular, can we find the Bruhat normal form of this product? We know how to factor any \(w \) in \(W \) into a product of elementary transpositions, so this reduces to a simpler question. (c) Given the elementary transposition \(s \), what is the Bruhat normal form of \(sg \)? This is more interesting

Let \(s = s_\alpha \), where \(\alpha = \alpha_{i,i+1} \). Suppose \(g = nwp \) with \(n \) in \(N \). There are two cases.

Suppose first that \(sw > w \), \(ws > w \), which means that \(\omega > 0 \). We can write \(p = \alpha_n \alpha^* \) with \(\alpha_n \) in \(N \) and \(\alpha^* \) in \(\prod_{\beta \neq \alpha} N \). But then

\[
sg = snwwan_\alpha n_\star = n_\star wan_\alpha ss^{-1} n_\star s = n_\star wan_\alpha sn_\star
\]

where \(n_\star = s^{-1}n_\star s \) lies again in \(N \). But then we continue

\[
wan_\alpha s = w \cdot an_\alpha a^{-1} \cdot as = wn_\star \alpha ss^{-1} as = wn_\star \alpha a_\star = wn_\star \alpha w^{-1},\quad ws_\star = n_\star w_\omega wsa
\]

but under the assumption \(ws > w \) we know that \(N_{w_\omega} = N_{w}N_{w_\omega} \), so \(n_\star w_\omega \) lies in \(N_w \).

Under the same assumption, the same argument run in reverse shows that every element of \(N_{w_\star}wP \) can be written as a product of elements in \(N_{w_\star}wP \) and \(N_\omega sP \).

Now let's look at the case \(x = ws < w \). Here we can write \(w = xs > x \). Thus as we have just proven every element of \(N_wwP \) as a product \(g_2g_\star \) of elements in \(N_wxP \) and \(N_\alpha sP \). But then

\[
ws = g_2g_\star s, \quad g_\star s = n_\alpha sps
\]

and

\[
n_\alpha sps = n_\alpha san_\star ss^{-1} n_\star s
\]

where \(s^{-1}n_\star s \) lies in \(N \). We are therefore reduced to the case \(G = GL_2 \), which I leave as an exercise. Applying the previous case to \(x \) and \(s \), we see in the end an explicit way to represent \(gs \) as an element of either \(N_xP \) or \(N_wwP \).
Define \(C(w) \) to be the double coset \(PwP \). I have shown, among other things:

5.1. Proposition. For any \(s \) in \(S \) and \(w \) in \(W \)

\[
C(w)C(s) = \begin{cases}
C(ws) & \ell(ws) > \ell(w) \\
C(w) \cup C(ws) & \text{otherwise}
\end{cases}
\]

We shall see later similar results for any reductive group. It will have a Bruhat decomposition, and this will give rise to a very explicit way to represent elements of the group. There will again be explicit formulas describing the group structure purely in these terms. What is unusual about \(\text{GL}_n \) is that its representation by matrices allows in particular a very convenient way to describe the unipotent elements. In general, an explicit and somewhat complicated description in terms of generators and relations is required to replace matrix multiplication. This will be in a way a substitute for the matrix representation.

At some point later on we will need an explicit calculation for \(\text{GL}_2 \).

5.2. Proposition. For \(x \neq 0 \)

\[
\begin{bmatrix} 1 & 0 \\ x & 1 \end{bmatrix} = \begin{bmatrix} 1 & x^{-1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ x & 0 \end{bmatrix} \begin{bmatrix} x & 0 \\ 0 & -x^{-1} \end{bmatrix} \begin{bmatrix} 1 & x^{-1} \\ 0 & 1 \end{bmatrix}
\]

6. The Bruhat order

The double coset \(PwLP \) is in almost any sense the largest of the double cosets. This can be made precise. Let \(B = AN \) be the parabolic subgroup of lower triangular matrices, **opposite** to \(B \). Then \(\overline{B} = wLBwL \), and \(B^{\text{opp}}B = wLBwLB \), the left translate of \(BwLB \) by \(wL \). For any \(n \times n \) matrix let \(X_{(r)} \) be the \(r \times r \) matrix made up from its first \(r \) rows and \(r \) columns.

6.1. Proposition. Suppose that \(x \) is an \(n \times n \) matrix. It can be factored as \(x = \nu an \) with \(\nu \) in \(\overline{N} \) and \(a \) in \(N \) if and only if every one of the \(n \) matrices \(X_{(r)} \) has non-zero determinant.

Proof. This follows from a simple variation of the algorithm described above, applying induction. At step \(k \) of Gauss reduction the first diagonal entry must be invertible. But by induction we have at this step the factorization of the \(k \times k \) sub-matrix, and the product of all the diagonal entries up to the \(k \)-th is its determinant.

The matrices with an \(\nu an \) factorization are hence the complement in \(\text{GL}_n \) of a finite union of zero sets of polynomials. If the field \(k \) has a topology—for example, if it the \(p \)-adic field \(\mathfrak{f} \)—they form an open set.

Suppose that \(y \) is a permutation with the reduced expression \(y = s_1 \ldots x_n \). The element \(x \) is said to be in the closure \(\overline{\mathcal{C}} \) of \(y \), or \(x \leq y \), if \(x \) is a product of a subsequence of the \(s_i \).

6.2. Proposition. The closure in \(G \) of the double coset \(C(y) \) is the disjoint union of the cosets \(C(x) \) with \(x \leq y \).

Proof. By induction on the length of \(y \). For \(y = 1 \) the assertion is trivial, and for \(y = s \) it follows from what we have calculated for \(\text{GL}_2 \), since \(P_s = C(s) \) is the parabolic subgroup which is a product of \(B \) and a copy of \(\text{GL}_2 \) embedded along the diagonal.

It suffices now, using induction and Proposition 5.1, to show that if \(\ell(ws) = \ell(w) + 1 \) then \(C(ws) = C(w) \overline{C(s)} \), or equivalently to show that \(C(w) \overline{C(s)} \) is closed. Both \(G/P \) and \(G/B \) are compact. If \(C \) is closed in \(G \) and \(CB = C \), then the image of \(C \) in \(G/P \) is closed, and so is its inverse image in \(G \), which is \(CP \).

One consequence of this is that the closure of a permutation \(x \) does not depend on any particular reduced expression for it. This can be shown also by purely combinatorial arguments.
6.3. Proposition. If σ and π are two permutations, $\pi \leq \sigma$ if σ is obtained from π by a sequence of transpositions (i,j) with $i < j$ and i occurring to the left of j in the array $\pi(i)$.

Also, according to Deodhar, for an array $(\sigma(i))$, let $\langle \sigma_i \rangle$ be the array written in increasing order. I say one array a_i is less than or equal to b_i if $a_i \leq b_i$ for all i. $\pi \leq \sigma$ if and only if the initial sequences of $\pi \leq \sigma$.

7. Parabolic subgroups

If n_i is the difference between the dimension of F_i and that of F_{i-1}, then $n = n_1 + n_2 + \cdots + n_r$—i.e. the n_i form a partition of n. For example, if the partition is $n = 1 + (n-1)$ we are looking at lines in projective space. The stabilizer of a flag is called a parabolic subgroup. If the partition is $n = 1 + \cdots + 1$ then the flag is called principal, and the stabilizer is a Borel subgroup.

7.1. Proposition. The group GL_n acts transitively on flags associated to the same partition.

Proof. It acts transitively on bases of k^n, and every flag is one associated to some compatible basis.

For example if we write $6 = 1 + 2 + 3$ we get the parabolic subgroup of matrices

$$
\begin{pmatrix}
\ast & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast \\
0 & \ast & \ast & \ast & \ast \\
0 & 0 & 0 & \ast & \ast \\
0 & 0 & 0 & \ast & \ast \\
\end{pmatrix}
$$

From the partition of n we obtain a direct sum decomposition

$$k^n = \oplus k^{n_i}$$

and an associated embedding of the product $\prod GL_{n_i}(k)$ into $GL_n(k)$, via disjoint $n_i \times n_i$ blocks along the diagonal. Another way to express the condition on matrices m in P_Θ is to say that the non-zero entries in m lie either above the diagonal, or in one of these blocks.

Mapping p in P to the sequence of its block diagonal matrices defines a homomorphism from P_Θ to $M_\Theta = \prod GL_{n_i}(k)$. The kernel consists of the subgroup N_Θ of unipotent upper triangular matrices with only $n_i \times n_i$ identity matrices along the diagonal. The group P_Θ is the semi-direct product of M_Θ and N_Θ.

7.2. Proposition. Every parabolic subgroup is conjugate to exactly one standard one.

7.3. Proposition. Any parabolic subgroup P is its own normalizer in GL_n.

7.4. Proposition. If $k = \mathfrak{t}$ then every quotient $P \backslash G$ is compact.

Proof. If the partition is $n = 1 + (n-1)$ then the quotient $P \backslash G$ is isomorphic to projective space $\mathbb{P}(\mathfrak{t})$. We shall see in a moment that this is compact. It follows by induction that $P \backslash G$ is compact if P is the group of upper triangular matrices, and from this in turn for an arbitrary P.

Why is $\mathbb{P}(\mathfrak{t})$ compact? If (x_i) is a non-zero vector then it is projectively equivalent to (x_i/μ) where $\mu = x_{m}$ is the coordinate with maximum p-adic norm. But the set of all points (x_i) with $x_{m} = 1$ and $|x_i| \leq 1$ is compact.
8. Flags

There is another way to understand the structure of the double coset PwP. First of all since P factors as $AN = NA$ and permutation matrices conjugate diagonal matrices among themselves, $PwP = NwP$, and the group N acts transitively on PwP/P. The isotropy subgroup of wP is $N \cap wNw^{-1}$. The point is that group N_w is complementary to $N \cap wNw^{-1}$, and maps canonically onto the quotient $N/N \cap wNw^{-1}$. This is the content of:

8.1. Proposition. If x and y are permutation matrices then the product map is a bijection of $N_x \times xN_yx^{-1}$ with N_{xy} if $\ell(xy) = \ell(x) + \ell(y)$.

Proof. This is an easy induction on the length of y.

8.2. Corollary. For any permutation matrix w

$$N_wwP = PwP.$$

There is a geometrical interpretation of this calculation. A flag \mathcal{F} in k^n is an increasing sequence of subspaces

$$F_0 = \{0\} \subset F_1 \subset F_2 \subset \cdots \subset F_c$$

It is called a principal flag if each dimension increment is one. As mentioned in the proof, any $n \times c$ matrix of rank c determines a flag

$$V_0 = \{0\} \subset V_1 \subset \cdots \subset V_c$$

where V_i is the space in k^n spanned by the first i columns. This is a principal flag of rank c. Multiplying the matrix on the right by any invertible upper triangular matrix preserves the flag. The Proposition describes a bijection between the set of principal flags of rank c and the $n \times c$ matrices in permuted column echelon form.

There is a direct way to see, at least, where σ comes from. Suppose \mathcal{F}_σ to be the standard flag in k^n and suppose \mathcal{F} to be any other flag. For V_i one of the components of \mathcal{F}, consider the map taking j in $[0, n]$ to $\dim V_i \cap V_{\sigma(j)}$. This is a non-decreasing function of i whose graph I call the profile of V_i (relative to \mathcal{F}_σ). In going from the profile of V_i to that of V_{i+1} a new layer is added to that of V_i, starting at some point $n(i)$. The sequence $n(i)$ is the permutation σ.

The following pictures show the profiles for $\sigma = [5, 2, 3, 1, 4]$, showing the new row added at each step.
Part III. \(p \)-adic fields

9. Lattices

I now take up the special features of \(\operatorname{GL}_n(\mathfrak{t}) \) where \(\mathfrak{t} \) is a \(p \)-adic field. Just about everything I'll say in this case applies also to the quotient field of a Dedekind domain \(R \), but with the ring \(\mathfrak{a} \) of integers replaced by the localization of \(R \) at a prime ideal \(p \). The simplest example would be \(\mathbb{Z}(p) \), the ring of all rational numbers \(a/b \) with \(b \) relatively prime to \(p \).

A lattice in \(\mathfrak{t}^n \) is any finitely generated \(\mathfrak{a} \)-module in \(\mathfrak{t}^n \), and a full lattice is one that in addition spans \(\mathfrak{t}^n \). The standard lattice is \(\mathfrak{t}_0 = \mathfrak{a}^n \).

A vector \((x_i) \) in \(\mathfrak{a}^n \) is called primitive if one of the \(x_i \) is a unit.

9.1. Lemma. A vector \(x = (x_1, \ldots, x_n) \) in \(\mathfrak{a}^n \) is an element of an \(\mathfrak{a} \)-basis of \(\mathfrak{a}^n \) if and only if it is primitive.

Proof. If \(x_i \) is a unit, then the set of vectors obtained by substituting \(x \) for \(x_i \) in the standard basis is again a basis.

9.2. Proposition. (Principal divisors) If \(L \) is a lattice in \(\mathfrak{t}^n \) then there exists a basis \(e_1, e_2, \ldots, e_n \) of \(\mathfrak{a}^n \), an integer \(r \geq 0 \), and integers \(m_1, m_2, \ldots, m_r \) with

\[
m_1 \leq m_2 \leq \cdots \leq m_r
\]

such that \(\varpi^{m_1} e_1, \varpi^{m_2} e_2, \ldots, \varpi^{m_r} e_r \) form a basis of \(L \). The integers \(m_1, m_2, \ldots, m_r \) are uniquely determined.

Recall that \(\varpi \) is a generator of \(p \).

Proof. The proof proceeds by induction on \(n \), and will be constructive.

Suppose \(\ell_1, \ell_2, \ldots, \ell_k \) are given generators of \(L \). It can happen that all \(\ell_i \) are zero, in which case we are through. Otherwise let \(m_1 < \infty \) be the greatest integer such that \(\varpi^{m_1} \ell_1 \) divides all the coordinates of the \(\ell_i \). Then there exists at least one \(\ell_i \) whose coordinate is of the form \(\varpi^{m_1} u \) with \(u \) a unit in \(\mathfrak{a} \), which we may as well assume to be \(\ell_1 \). According to Lemma 9.1, there exists a basis of \(\mathfrak{a}^n \) whose first element is \(e_1 = \varpi^{-m_1} \ell_1 \). Choose coordinates on \(\mathfrak{t}^n \) corresponding to this basis. By subtraction of a multiple of \(\ell_1 \), we may assume that \(\ell_2, \ldots, \ell_k \) have first coordinate 0. In effect, \(L \) is now the direct sum of the rank one \(\mathfrak{a} \)-module generated by \(\ell_1 \) and the module \(L \) generated by the rest of the \(\ell_i \). The latter may be considered a lattice in \(\mathfrak{t}^{n-1} \).

If \(n = 1 \), we are through, while if \(n > 1 \) we can apply induction and assume the Proposition to be true for \(L_{n-1} \).

As for uniqueness, choose the \(\ell_i \) to make up a basis of \(L \). If we write out the matrix whose columns are the vectors \(\ell_i \), then \(\varpi^{m_1} \) is the greatest common divisor of all the matrix entries. \(\varpi^{m_1 + m_2} \) is the greatest common divisor of the 2 \times 2 minor determinants, etc. Changing the basis of \(L \) amounts to multiplying this matrix on the right by a matrix in \(\operatorname{GL}_r(\mathfrak{a}) \) and doesn't change these characterizations.

9.3. Corollary. All lattices are free \(\mathfrak{a} \)-modules.

The group \(\operatorname{GL}_n(\mathfrak{t}) \) acts on the set of all full lattices, considered as subsets of \(V = \mathfrak{t}^n \). The stabilizer of \(\mathfrak{a}^n \) is \(\operatorname{GL}_n(\mathfrak{a}) \). According to Corollary 9.3, the group \(\operatorname{GL}_n(\mathfrak{t}) \) acts transitively on full lattices.

Let \(A \) be the group of diagonal matrices, \(A^+ \) those whose entries are \(\varpi^{m_i} \) with \(m_i \leq m_{i+1} \).

9.4. Corollary. (Cartan decomposition) Every matrix \(g \) in \(\operatorname{GL}_n(\mathfrak{t}) \) can be expressed as

\[
g = \gamma_1 t \gamma_2
\]

where \(\gamma_1 \) and \(\gamma_2 \) are in \(\operatorname{GL}_n(\mathfrak{a}) \) and \(t \) is in \(A^+ \). The element \(t \) is unique modulo \(A(\mathfrak{a}) \).
The elements isotropy subgroup of (1) Suppose large is this group? the isotropy group is therefore order q

First comes a simpler question. The group This difference in qualitative behaviour remains valid for all \(K \). For example, suppose $n = 2$. If t is the identity matrix then $KtK = K$ and its volume is that of K, but if

$$t = \begin{bmatrix} 1 & 0 \\ 0 & \omega^m \end{bmatrix}$$

with $m > 0$ then the volume of KtK is equal to

$$(1 + q^{-1})q^m$$

times the volume of K. This is because the map $g \mapstogL$ induces a bijection of KtK/K with lines in $\mathbb{P}^1(\mathfrak{o}/p^m)$. This difference in qualitative behaviour remains valid for all n, as we shall now see.

First comes a simpler question. The group $GL_n(\mathfrak{o})$ maps canonically onto the finite group $GL_n(\mathfrak{o}/p^m)$. How large is this group?

(1) Suppose $m = 1$. Then we are looking at $G = GL_n(F_q)$. Let τ_n be the number of elements in G. For $n = 1$ this is \mathbb{F}_q^*. Thus $\tau_1 = (q - 1)$, for example. For $n > 1$, the group G acts transitively on $\mathbb{F}_q^n \setminus \{0\}$, and the isotropy subgroup of $\{1, 0, \ldots, 0\}$ contains exactly those matrices m with $m_{1,1} = 1$ and $m_{i,1} = 0$ for $i > 1$. The elements $m_{1,1}$ are arbitrary, and the lower $(n - 1) \times (n - 1)$ matrix must be non-singular. The order of the isotropy group is therefore order $q^{n-1}\tau_{n-1}$, and we have for τ_n the recursive formula

$$\tau_n = \begin{cases} q - 1 & \text{if } n = 1 \\ (q^n - 1)q^{n-1}\tau_{n-1} & \text{otherwise} \end{cases}$$

from which we calculate by induction

$$\tau_n = (q^n - 1) \ldots (q - 1)q^{n(n-1)/2}$$

It is a polynomial in q of order q^{n^2}.

(2) The group $GL_n(\mathfrak{o}/p^m)$ fits into an exact sequence

$$1 \to I + pM_{n-1}(\mathfrak{o}/p^m) \to GL_n(\mathfrak{o}/p^m) \to GL_n(F_q) \to 1$$
The order of $\text{GL}_n(\sigma/p^m)$ is therefore the product of the $q^{n^2(m-1)}$ and the τ_n.

Now define a sort of normalized size

$$
\gamma(\text{GL}_n) = \frac{\tau_n}{q^n} = (1 - q^{-n}) (1 - q^{-(n-1)}) \cdots (1 - q^{-1}).
$$

10.1. Proposition. Suppose

$$
m_1 \leq m_2 \leq \ldots \leq m_n
$$

and let

$$
t = \text{diag}(\omega^{m_i}).
$$

Suppose that the integers n_i are the lengths of constant runs in the sequence (m_i), so that $n_1 + \cdots + n_k = n$ and

$$
m_1 = \cdots = m_{n_1} < m_{n_1+1} = \cdots = m_{n_1+n_2} < m_{n_1+n_2+1} = \cdots
$$

Let

$$
M = M_t = \text{GL}_{n_1} \times \text{GL}_{n_2} \times \cdots \times \text{GL}_{n_k}
$$

and define

$$
\gamma(M) = \prod \gamma(\text{GL}_{n_i}).
$$

We embed M as diagonal blocks in GL_n. Let P be the parabolic subgroup of GL_n generated by M and the upper triangular matrices. Then

$$
|KtK/K| = \frac{\gamma(\text{GL}_n)}{\gamma(M)} \delta_0(t).
$$

Here δ_0 is the character

$$
\prod_{j < i} |a_j/a_i|
$$

of the group of diagonal matrices (a_i).

Proof. The map $k \mapsto ktK/K$ induces a bijection of $K/K \cap tKt^{-1}$ with KtK/K. The group $K \cap tKt^{-1}$ consists of all integral invertible matrices g with $g_{i,j} \equiv 0 \mod \omega^{m_i-m_j}$. There is no condition when $m_i \leq m_j$, so this is in effect a restriction only when $i > j$. Fix $m \geq m_n$, so that $m \geq m_i$ for all i. Then the index of $K \cap tKt^{-1}$ in K is the same as that of the index of $K_m \cap tKm^{-1}$ in K_m, where $K_m = \text{GL}_n(\sigma/p^m)$.

Let P be the parabolic subgroup corresponding to the partition of n. The cardinality of K_m is $\tau_n q^{n^2(m-1)}$.

What is that of $K_m \cap tKm^{-1}$? The image of $K_m \cap tKm^{-1}$ modulo p is the parabolic subgroup $P(F_q)$ of $\text{GL}_n(F_q)$, which has cardinality $\prod_{1 \leq i \leq k} \tau_n \prod_{1 \leq j < k} q^{n_i}$, j. The kernel of the projection is the subgroup of matrices in $K_m \cap tKm^{-1}$ congruent to I modulo p. It has cardinality

$$
\prod_{1 \leq i \leq k} \tau_n \prod_{1 \leq j < k} q^{n_i} \prod_{1 \leq j \leq k} q^{-n_j} = q^{n^2 m} \prod_{1 \leq i < j \leq k} \tau_n q^{-n_i n_j} q^{n_i m} q^{-m_j}
$$

where μ_i is the common value of m_j in the block of n_i. The cardinality of $K_m \cap tKm^{-1}$ is therefore

$$
\prod_{1 \leq i \leq k} \tau_n q^{n_i} \prod_{1 \leq j < k} q^{-n_j} \prod_{1 \leq j \leq k} q^{n_i m} q^{-m_j} = q^{n^2 m} \prod_{1 \leq i < j \leq k} \tau_n q^{-n_i n_j} q^{n_i m} q^{-m_j}
$$

and the cardinality of the quotient is therefore

$$
\frac{\tau_n q^{n^2(m-1)}}{q^n \prod_{1 \leq i \leq k} \tau_n q^{-n_i} \prod_{1 \leq j < k} q^{-m_j}} = \frac{\gamma(\text{GL}_n)}{\gamma(M)} \prod_{1 \leq i \leq n} q^{m_i-m_j}.
$$
11. Iwahori subgroups

Let \(I \) be the inverse image in \(\text{GL}_n(\mathfrak{o}) \) of the group of upper triangular matrices in \(\text{GL}_n(\mathbb{F}_q) \). An Iwahori subgroup of \(\text{GL}_n(\mathfrak{o}) \) is any conjugate of \(I \).

11.1. Proposition. We have the factorization \(G = IW P \).

Proof. Use the Bruhat factorization for \(\text{GL}_n(\mathbb{F}_q) \). This tells us that \(K = IW(K \cap P) \). Apply Corollary 9.6.

If \(P \) is a parabolic subgroup of \(G, \overline{P} \) opposite to \(P \), and \(K \) a compact open subgroup of \(G \), define
\[
M = P \cap \overline{P} \\
K_M = K \cap M \\
K_N = K \cap N
\]
The group \(K \) is said to possess an Iwahori factorization with respect to \((P, P)\) if the product map
\[
K_N \times K_M \times K_N \to K
\]
is a bijection.

I recall that the standard parabolic subgroups of \(\text{GL}_n(\mathfrak{k}) \) are those stabilizing the standard flags
\[
0 \subset \mathfrak{k}^1 \subset \mathfrak{k}^{1+n} \subset \ldots \subset \mathfrak{k}^n
\]
They are those parabolic subgroups containing the Borel group of upper triangular matrices, and their opposites are their transposes.

11.2. Proposition. Every element \(g \) of the Iwahori group \(I \) has a unique factorization with respect to any standard parabolic subgroup.

Proof. It suffices to show this for the Borel subgroup. In this case it follows from Proposition 6.1, since the determinant of an element of an Iwahori subgroup is a unit in \(\mathfrak{o} \).

11.3. Proposition. For any pair \((P, \overline{P})\) there exists a sequence of compact open subgroups \(K \) forming a basis of neighbourhoods of the identity, each possessing an Iwahori factorization with respect to \(P \).

Proof. For \(\text{GL}_n(\mathfrak{f}) \) we choose the sequence \(\text{GL}_n(p^n) \). The Iwahori factorization follows from Proposition 4.5.

The group \(A(\mathfrak{o}) \) plays a role in the \(p \)-adic group analogous to that of \(A \) in the algebraic group. The normalizer \(N_G(A(\mathfrak{o})) \) of \(A(\mathfrak{o}) \) in \(G \) is the same as the normalizer of \(A \), the semi-direct product of \(A \) and the Weyl group \(W \). But the quotient
\[
\overline{W} = N_G(A(\mathfrak{o}))/A(\mathfrak{o})
\]
is now the semidirect product of \(A/A(\mathfrak{o}) \) and \(W \). This plays the role of \(W \). The group \(A/A(\mathfrak{o}) \) is isomorphic to \(\mathbb{Z}^n \), a free group of rank \(n \) over \(\mathbb{Z} \). It may be identified with the group of diagonal matrices whose entries are powers of \(\varpi \). Call an \(n \times r \) matrix \(X \) with \(r \leq n \), of rank \(r \), Iwahori-reduced if it has this property: every column and every row has exactly one non-zero entry, and that of the form \(\varpi^n \). Elements of the group \(\overline{W} \) may thus be identified with Iwahori-reduced \(n \times n \) matrices. The group \(\overline{W} \) acts as affine transformations on \(\mathbb{Z}^n \), and is called the affine permutation group.

For \(\text{GL}_2(\mathfrak{k}) \), for example, the Iwahori-reduced matrices are these:
\[
\begin{bmatrix}
\varpi^k & 0 \\
0 & \varpi^\ell
\end{bmatrix}, \quad
\begin{bmatrix}
0 & \varpi^k \\
\varpi^\ell & 0
\end{bmatrix}.
\]

We want now to prove a \(p \)-adic version of the Bruhat decomposition—that every element \(g \) of \(\text{GL}_n(\mathfrak{f}) \) factors uniquely as \(g = b_1 \tilde{w} b_2 \) where \(b_i \) is an element of \(I \) and \(\tilde{w} \) is in \(\overline{W} \).

To go with this claim is an algorithm involving elementary Iwahori operations on columns:
• Add to a column \(d \) a multiple \(xc \) of a previous column \(c \) by some \(x \) in \(\mathfrak{o} \);
• add to a column \(c \) a multiple \(xd \) of a subsequent column by \(x \) in \(\mathfrak{p} \);
• multiply a column by a unit in \(\mathfrak{o} \);

and also on rows:
• Add to a row \(c \) a multiple \(xd \) of a subsequent row \(d \) with \(x \) in \(\mathfrak{o} \);
• add to a row \(d \) a multiple \(xc \) of a previous row with \(x \) in \(\mathfrak{p} \);
• multiply a row by a unit in \(\mathfrak{o} \);

Each of these column (row) operations amounts to right (resp. left) multiplication by what I’ll call an Iwahori matrix.

Here are some examples:

\[
\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u + xv \\ v \end{bmatrix}
\]

\[
\begin{bmatrix} 1 & 0 \\ \mathfrak{q}x & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u \\ \mathfrak{q}xu + v \end{bmatrix}
\]

\[
\begin{bmatrix} u & v \\ 1 & x \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} u \\ xu + v \end{bmatrix}
\]

\[
\begin{bmatrix} u & v \\ 1 & 0 \\ \mathfrak{q}x & 1 \end{bmatrix} = \begin{bmatrix} u + \mathfrak{q}xv \\ v \end{bmatrix}.
\]

Theorem. Any \(n \times r \) matrix of column rank \(r \), with \(r \leq n \), can be reduced by elementary Iwahori row and column operations to a unique Iwahori-reduced matrix.

Proof. By induction on \(r \).

For \(r = 1 \), suppose the vector is of the form

\[
\begin{bmatrix} \mathfrak{q}^n x \\ \mathfrak{q}^n u \\ \mathfrak{q}^{n+1} y \end{bmatrix}
\]

with \(x, y \) integral, \(u \) a unit, the entry \(u\mathfrak{q}^n \) in the \(i \)-th row. First multiply the \(i \)-row by \(1/u \) to get the middle entry equal to \(\mathfrak{q}^n \). Then left multiplication by the matrix that is unipotent except in the \(i \)-column and whose \(i \)-th column is

\[
\begin{bmatrix} -x \\ 1 \\ -\mathfrak{q}y \end{bmatrix}
\]

will reduce the vector to

\[
\begin{bmatrix} 0 \\ \mathfrak{q}^n \\ 0 \end{bmatrix}.
\]

Suppose now that the first \(r \) columns have been reduced, and look at column \(r + 1 \). Let \(R \) be the set of rows with a non-zero entry in the first \(r \) columns. Choose \(i \) in the complement of \(R \) as in the first step, so that \(|a_{j,1}| \leq |a_{i,1}| \) for \(j \leq i \) and not in \(R \) and \(|a_{j,1}| < |a_{i,1}| \) for \(j > i \) and not in \(R \). Apply Iwahori row operations to get zeroes in all but row \(i \) and the rows in \(R \). Let’s look at just one of the rows in \(R \) as well as row \(i \). We have one of these configurations: of non-zero entries in these rows:

\[
\begin{bmatrix} \mathfrak{q}^k & u\mathfrak{q}^n \\ 0 & \mathfrak{q}^l \end{bmatrix}, \quad \begin{bmatrix} 0 & \mathfrak{q}^l \\ \mathfrak{q}^k & u\mathfrak{q}^n \end{bmatrix}.
\]

where \(u \) is a unit.
That is to say, we are now reduced to essentially 2×2 problem. Let’s suppose we are in the first case . . .

\[
\begin{bmatrix}
\omega^k & u\omega^n \\
0 & \omega^\ell
\end{bmatrix}.
\]

If $k \leq n$ we can subtract $u\omega^{n-k}$ times the first column from the second to get

\[
\begin{bmatrix}
\omega^k & 0 \\
0 & \omega^\ell
\end{bmatrix}.
\]

If $\ell \leq n$ we can subtract $u\omega^{n-\ell}$ times the second row from the first to get the same matrix.

So now we may assume $k > n$ and $\ell > n$. Subtract from the second row $\omega^{\ell-n}/u$ times the first. This gives

\[
\begin{bmatrix}
\omega^k & u\omega^n \\
-\omega^{k+\ell-n}/u & 0
\end{bmatrix}.
\]

Divide the second column by u, multiply the second row by $-u$:

\[
\begin{bmatrix}
\omega^k & \omega^n \\
\omega^{k+\ell-n} & 0
\end{bmatrix}.
\]

Subtract ω^{k-n} times the second column from the first to get

\[
\begin{bmatrix}
0 & \omega^n \\
\omega^{k+\ell-n} & 0
\end{bmatrix},
\]

which is Iwahori reduced.

. . . and then in the second:

\[
\begin{bmatrix}
0 & \omega^\ell \\
\omega^k & u\omega^n
\end{bmatrix},
\]

where u is a unit.

If $n > \ell$ or $n \geq k$ this can be reduced to

\[
\begin{bmatrix}
0 & \omega^\ell \\
\omega^k & 0
\end{bmatrix}.
\]

So now we assume $n \leq \ell$, $n < k$. Subtract ω^{k-n}/u times the second column from the first:

\[
\begin{bmatrix}
-\omega^{k+\ell-n}/u & \omega^\ell \\
0 & u\omega^n
\end{bmatrix}.
\]

Multiply and divide by u:

\[
\begin{bmatrix}
\omega^{k+\ell-n} & \omega^\ell \\
0 & \omega^n
\end{bmatrix}.
\]

Subtract $\omega^{\ell-n}$ times the second row from the first:

\[
\begin{bmatrix}
\omega^{k+\ell-n} & 0 \\
0 & \omega^n
\end{bmatrix}.
\]

This concludes the first part of the proof.

As for uniqueness, an argument similar that for uniqueness in the Bruhat decomposition can be used. This version uses the volume of $L_i \cap L_{s,j}$ to construct the profile, where $L_{s,j}$ is the standard lattice flag.