Characters as tempered distributions: p-adic fields

Bill Casselman
University of British Columbia
cass@math.ubc.ca

A character χ of the multiplicative group of a local field k defines a distribution $\varphi=\varphi_{\chi}$ on that group:

$$
\langle\varphi, f\rangle=\int_{k^{\times}} \chi(x) f(x) d^{\times} x .
$$

It satisfies the functional equation

$$
\mu_{a} \varphi=\chi(a) \varphi,
$$

which means that φ is χ-equivariant. Up to scalar multiplication, it is unique with respect to that property.
The multiplicative group k^{\times}is an open set in k, and the Schwartz space of k^{\times}is embedded into that of k. Under what circumstances does φ on k^{\times}extend to a χ-equivariant tempered distribution on k ? What does the space of all χ-equivariant distributions on k look like? What is the Fourier transform of the distribution φ_{χ} ?
This material originated in [Tate:1951/1967], but the approach here amounts to working out details suggested in [Weil:1967]. What is slightly new is that the computation of the Fourier transform of χ is not quite the usual one.

Contents

1. Characters as distributions on the multiplicative group 3
2. As distributions on the additive group ... 4
3. Analysis on finite rings 6
4. The Fourier transform . 7
5. References . 11

Let

$$
\begin{aligned}
k & =\text { a non-Archimedean local field } \\
\mathfrak{o} & =\text { integers in } k \\
\mathfrak{p} & =\text { prime ideal of } \mathfrak{o} \\
\mathfrak{d} & =\text { different of the extension } k / \mathbb{Q}_{p} \\
& =\text { inverse of }\left\{x \in k \mid \operatorname{trace}_{k / \mathbb{Q}_{p}}(x \mathfrak{o}) \subseteq \mathbb{Z}_{p}\right\} \\
& =(\text { say }) \mathfrak{p}^{\delta} \\
\varpi & =\text { generator of } \mathfrak{p} \\
\nu & =\text { the multiplicative character } x \mapsto|x| \\
\mathbb{F}_{q} & =\mathfrak{o} / \mathfrak{p} .
\end{aligned}
$$

For an ideal $\mathfrak{a} \subseteq \mathfrak{o}$ let $N \mathfrak{a}=|\mathfrak{o} / \mathfrak{a}|$. For example, $N \mathfrak{p}=q$.
There is a canonical embedding of $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ into the quotient \mathbb{Q} / \mathbb{Z}, identifying it with the p-torsion. For every x in \mathbb{Q}_{p} there exists a unique fraction m / p^{k} such that $x-m / p^{k}$ is in \mathbb{Z}_{p}. The integer m is uniquely
determined modulo p^{k}, and $x \mapsto \psi_{p}(x)=e^{2 \pi i m / p^{k}}$ is well defined, and determines a character of \mathbb{Q}_{p} whose kernel is \mathbb{Z}_{p}. The map

$$
x \longmapsto \psi(x)=\psi_{p}\left(\operatorname{trace}_{k / \mathbb{Q}_{p}}(x)\right)
$$

is a character of k such that

$$
\mathfrak{d}^{-1}=\{x \in k \mid \psi(x \mathfrak{o})=1\} .
$$

The character $\psi\left(x / \varpi^{\delta+m}\right)$ is a primitive character of $\mathfrak{o} / \mathfrak{p}^{m}$.
Choose the measure on k such that

$$
\operatorname{meas}(\mathfrak{o})=|\mathfrak{o} / \mathfrak{d}|^{-1 / 2}=q^{-\delta / 2}
$$

The measure $d^{\times} x=d x /|x|$ is a multiplicatively invariant measure on k^{\times}.

1. Characters as distributions on the multiplicative group

The Schwartz space $\mathcal{S}\left(k^{\times}\right)$is the vector space of all locally constant complex-valued functions of compact support on k^{\times}. The multiplicative group acts on it by right multiplication:

$$
\rho_{a} f(x)=f(x a) .
$$

A distribution on k^{\times}is any linear functional on its Schwartz space. The group k^{\times}acts by the usual duality formula on the linear dual of $\mathcal{S}\left(k^{\times}\right)$, the space of distributions:

$$
\left\langle\rho_{a} \varphi, f\right\rangle=\left\langle\varphi, \rho_{a^{-1}} f\right\rangle .
$$

The integral

$$
\langle\varphi \chi, f\rangle=\int_{k^{\times}} f(x) \chi(x) d^{\times} x=\int_{k^{\times}} f(x) \chi(x)|x|^{-1} d x .
$$

defines a χ-equivariant distribution on k^{\times}. It is essentially unique:
1.1. Theorem. Every distribution φ on k^{\times}satisfying the functional equation $\rho_{a} \varphi=\chi(a) \varphi$ is a multiple of φ_{χ}.
Proof. Suppose φ to be such a distribution. If $\chi=1$ on $1+\mathfrak{p}^{f}$, then

$$
\langle\varphi, f\rangle=\left\langle\varphi, f_{*}\right\rangle
$$

where

$$
f_{*}(x)=\frac{1}{\operatorname{meas}\left(1+\mathfrak{p}^{f}\right)} \cdot \int_{1+\mathfrak{p}^{f} f} f(x u) d u .
$$

Therefore φ amounts to integration against

$$
F(x)=\frac{\left\langle\varphi, \mathfrak{c h a r}_{x\left(1+\mathfrak{p}^{f}\right)}\right\rangle}{\operatorname{meas}\left(1+\mathfrak{p}^{f}\right)} .
$$

We have a short exact sequence

$$
1 \longrightarrow \mathfrak{o}^{\times} \longrightarrow k^{\times} \longrightarrow k^{\times} / \mathfrak{o}^{\times} \longrightarrow 1
$$

The map from $\langle\varpi\rangle$ to the quotient is an isomorphism, so the quotient is isomorphic to the group of powers of ϖ, isomorphic to \mathbb{Z}. This isomorphism does not depend on the choice of ϖ, and I'll call the image of ϖ in the quotient a canonical generator of it. I'll write it as \mathfrak{p}^{\times}.
A character of k^{\times}trivial on \mathfrak{o}^{\times}, or equivalently a character of $k^{\times} / \mathfrak{o}^{\times}$, is said to be unramified. It is determined by the image of ϖ, which can be any non-zero complex number z. It is often convenient to write it as $|x|^{s}$ with s in \mathbb{C}, but since $|x|=q^{-n}$ if $x=\varpi^{n}$ we have

$$
|x|^{s}=q^{-n s}=e^{-n s \log q}
$$

so s is only determined up to a term $2 \pi i n / \log q$. Nonetheless, because of global considerations it is convenient to use s as a parameter.
A splitting of the exact sequence above is determined by a single element of k^{\times}whose image in $k^{\times} / \mathfrak{o}^{\times}$ is \mathfrak{p}^{\times}or, equivalently, a generator of \mathfrak{p}. There is no best choice, in spite of personal prejudices. Given a generator ϖ of \mathfrak{p}, one can factor any x in k^{\times}as $u \cdot \varpi^{n}$, thus factoring $k^{\times}=\mathfrak{o}^{\times} \times\langle\varpi\rangle$. In these circumstances one can write any character of k^{\times}uniquely as $\sigma(x) \cdot z^{\operatorname{ord}(x)}$, where $\sigma(\varpi)=1$ and z lies in \mathbb{C}^{\times}.
Remark. Suppose f to lie in $\mathcal{S}\left(k^{\times}\right), \chi(x)=\omega(x) \cdot z^{\operatorname{ord}(x)}$. Then $\langle\chi, f\rangle$ is a polynomial in $z^{ \pm 1}$ (i.e. a Laurent polynomial in z.

2. As distributions on the additive group

The Schwartz space of k is that of all locally constant, complex-valued functions of compact support on k. We have an exact sequence of vector spaces

$$
\begin{equation*}
0 \longrightarrow \mathcal{S}\left(k^{\times}\right) \longrightarrow \mathcal{S}(k) \xrightarrow{f \mapsto f(0)} \mathbb{C} \longrightarrow 0 \tag{2.1}
\end{equation*}
$$

The group k^{\times}acts on all of these compatibly-on the first two by ρ and on the last trivially. The triviality means that the image of each $\rho_{a} f-f$ in \mathbb{C} is 0 . Given χ, integration gives us a χ-equivariant distribution φ_{χ} on k^{\times}. Does it extend to a distribution on k ? Is the extension unique?
If f lies in $\mathcal{S}(k)$, then $f-f(0) \mathfrak{c h a r}_{\mathfrak{o}}$ lies in $\mathcal{S}\left(k^{\times}\right)$. Evaluating $\left\langle\varphi_{\chi}, f\right\rangle$ therefor reduces to evaluating $\left\langle\varphi_{\chi}, \mathfrak{c h a r}_{\mathfrak{o}}\right\rangle$. But if $z=\chi(\varpi)$ and $|z|<1$ we can write

$$
\begin{aligned}
\left\langle\varphi_{\chi}, \mathfrak{c h a r}_{\mathfrak{o}}\right\rangle & =\int_{\mathfrak{o}} \chi(x)|x|^{-1} d x \\
& =\sum_{k=0}^{\infty} \int_{\mathfrak{p}^{k}-\mathfrak{p}^{k+1}} \chi(x)|x|^{-1} d x \\
& =\left(\int_{\mathfrak{o}^{\times}} \chi(x) d x\right)\left(\sum_{k=0}^{\infty} z^{k}\right)
\end{aligned}
$$

which certainly converges, and defines an equivariant extension.
2.2. Theorem. If $\chi \neq 1$ there is a unique extension. If $\chi=1$ there is none, and the Dirac distribution

$$
\delta_{0}: f \longmapsto f(0)
$$

spans the space of distributions φ such that $\rho_{a} \varphi=\varphi$ for all a.
Proof. Since k^{\times}acts trivially on $\mathcal{S}(k) / \mathcal{S}\left(k^{\times}\right)$, any extension is certainly unique.

Suppose at first that φ did satisfy $\rho_{a} \varphi=\chi(a) \varphi$. Then

$$
\left\langle\rho_{a} \varphi, f\right\rangle=\left\langle\varphi, \rho_{a^{-1}} f\right\rangle=\chi(a)\langle\varphi, f\rangle
$$

so $\left\langle\varphi, \rho_{a^{-1}} f-f\right\rangle=(\chi(a)-1)\langle\varphi, f\rangle$ and

$$
\begin{equation*}
\langle\varphi, f\rangle=\frac{\left\langle\varphi, \rho_{a^{-1}} f-f\right\rangle}{\chi(a)-1} . \tag{2.3}
\end{equation*}
$$

as long as $\chi(a) \neq 1$. But this can be used to specify φ, as long as $\chi!=1$. For any a $\rho_{a^{-1}} f-f$ lies in the Schwartz space of k^{\times}, so the numerator is always defined, and if we choose a with $\chi(a)!=1$ this formula will define a suitable distribution.
If $\chi=1$, the argument fails, and in fact there is no extension to k. For suppose φ were one. Let f be the characteristic function of some small neighbourhood of 0 . Then on the one hand

$$
\left\langle\varphi, \rho_{\varpi^{-1}} f\right\rangle=\langle\varphi, f\rangle, \quad\left\langle\varphi, \rho_{\varpi^{-1}} f-f\right\rangle=0,
$$

but on the other

$$
\left\langle\varphi, \rho_{\varpi^{-1}} f-f\right\rangle=\int_{k^{\times}}\left(f(x)-f\left(\varpi^{-1} x\right)\right) d^{\times} x \neq 0 .
$$

Remark. There is another way to look at the same problem. Choose a fixed φ_{*} in $\mathcal{S}(k)$ with $\varphi_{*}(0)=1$. Then for every φ in $\mathcal{S}(k)$ the function $\varphi-\varphi(0) \cdot \varphi_{*}$ will lie in $\mathcal{S}\left(k^{\times}\right)$. The integral

$$
\int_{k^{\times}} \chi(x)\left(\varphi(x)-\varphi(0) \cdot \varphi_{*}(x)\right) d^{\times} x
$$

defines a distribution that extends χ on $\mathcal{S}\left(k^{\times}\right)$. It is not the only such extension, since we can always add a multiple of δ_{0} to it without modifying its effect on $\mathcal{S}\left(k^{\times}\right)$. So in looking for a χ-equivariant extension of χ we are looking for a distribution

$$
\langle\varphi, \varphi\rangle=\int_{k^{\times}} \chi(x)\left(\varphi(x)-\varphi(0) \cdot \varphi_{\#}\right) d^{\times} x+c_{\chi} \varphi(0)
$$

such that $\rho_{a} \varphi=\chi(a) \varphi$ for all a.
I leave as exercise to find the constant c_{χ} making φ a χ-equivariant distribution.

$$
0 — \text { - }
$$

Example. Suppose $\chi(x)=|x|^{s}=z^{\operatorname{ord}(x)}$ and f is the characteristic function of \mathfrak{o}. What is $\langle\chi, f\rangle$? For $\mathrm{RE}(s)>0$

$$
\begin{aligned}
\langle\chi, f\rangle & =\int_{0}|x|^{-s-1} d x \\
& =\sum_{k \geq 0} \int_{\mathfrak{p}^{k}-\mathfrak{p}^{-(k+1)}}|x|^{s} d x /|x| \\
& =\sum_{k \geq 0} q^{-k s}=\frac{1}{1-q^{-s}} .
\end{aligned}
$$

The residue of the distribution $|x|^{s}$ at $s=0$ is a multiple of the Dirac δ_{0}.
Remark. It is potentially useful to consider these results in light of the long exact sequence of cohomology derived from (2.1) :

$$
0 \longrightarrow \operatorname{Hom}_{k^{\times}}(\mathbb{C}, \mathbb{C}) \longrightarrow \operatorname{Hom}_{k^{\times}}(\mathcal{S}(k), \mathbb{C}) \longrightarrow \operatorname{Hom}_{k^{\times}}\left(\mathcal{S}\left(k^{\times}\right), \mathbb{C}\right) \longrightarrow \operatorname{Ext}_{k^{\times}}(\mathbb{C}, \mathbb{C}) \longrightarrow \ldots
$$

3. Analysis on finite rings

Let $\mathfrak{r}=\mathfrak{o} / \mathfrak{p}^{n}$ for some $n>0$. For the moment, suppose ω to be any primitive additive character of \mathfrak{r}, for example

$$
x \longmapsto \psi\left(x / \varpi^{\delta+n}\right) .
$$

The Fourier transform on $\mathbb{C}[r]$ is

$$
\widehat{f}(y)=\frac{1}{\sqrt{\mathrm{Nr}}} \cdot \sum \omega(-x y) f(x)
$$

It is an isometry of $L^{2}(\mathfrak{r})$ with itself.
If χ is a multiplicative character of \mathfrak{o}^{\times}, it is said to have conductor \mathfrak{p}^{r} is χ is trivial on $1+\mathfrak{p}^{r}$ but not on $1+\mathfrak{p}^{r-1}$. If χ has conductor \mathfrak{p}^{r}, extend it to be a function on all of \mathfrak{r} by setting $\chi(x)=0$ for x not a unit. This extension is, up to scalar factor, the unique χ-equivariant function on \mathfrak{r}.
In this situation, define

$$
\mathfrak{g}(\chi)=\frac{1}{\sqrt{\mathrm{Nr}}} \cdot \sum_{\mathfrak{r}} \omega(-x) \chi(x)
$$

The following is easy to verify:
3.1. Proposition. The Fourier transform of χ is $\mathfrak{g}(\chi) \chi^{-1}$.
3.2. Corollary. We have $|\mathfrak{g}(\chi)|=1$.

Proof. Because the L^{2} norm of the Fourier transform of χ is equal to that of χ.

4. The Fourier transform

The formula

$$
\widehat{f}(y)=\int_{k} \psi(-x y) f(x) d x
$$

defines a Fourier transform on $\mathcal{S}(k)$, which is an isomorphism of $\mathcal{S}(k)$ with itself. With the given choice of measure, the Fourier transform of $\mathfrak{c h a r}{ }_{0}$ is $N \mathfrak{d}^{-1 / 2} \mathfrak{c h a r}_{\mathfrak{d}^{-1}}$, and vice-versa.
For two functions f, φ in $\mathcal{S}(k)$

$$
\langle\widehat{\varphi}, f\rangle=\langle\varphi, \widehat{f}\rangle .
$$

When φ is a distribution, this defines the Fourier transform of φ.
How does the Fourier transform interact with the action of k^{\times}?
4.1. Lemma. For any distribution φ

$$
\left\langle\rho_{c} \widehat{\varphi}, f\right\rangle=|c|\left\langle\widehat{\rho_{1 / c} \varphi}, f\right\rangle .
$$

Proof. For any f in $\mathcal{S}(k)$

$$
\begin{aligned}
\widehat{\rho_{1 / c} f}(y) & =\int_{k} \psi(-x y) f(x / c) d x \\
& =\int_{k} \psi(-z c y) f(z) d c z \\
& =|c| \widehat{f}(c y),
\end{aligned}
$$

and $\widehat{\rho_{1 / c} f}=|c| \rho_{c} \widehat{f}$. Hence for a distribution φ

$$
\begin{aligned}
\left\langle\rho_{c} \widehat{\varphi}, f\right\rangle & =\langle\widehat{\varphi}, \rho(1 / c) f\rangle \\
& =\langle\varphi, \widehat{(1 / c)} f\rangle \\
& =\langle\varphi,| c\left|\rho_{c} \widehat{f}\right\rangle \\
& =|c|\left\langle\varphi, \rho_{c} \widehat{f\rangle}\right. \\
& =|c|\left\langle\rho_{1 / c} \varphi, \widehat{f}\right\rangle \\
& =|c|\left\langle\widehat{\rho_{1 / c} \varphi}, f\right\rangle .
\end{aligned}
$$

If φ is χ-equivariant, this gives us

$$
\rho_{c} \widehat{\varphi}=|c| \chi^{-1}(c) \widehat{\varphi},
$$

so that $\widehat{\varphi}$ is equivariant for $\nu \chi^{-1}$. Since the space of χ-equivariant distributions has dimension one, this implies that the Fourier transform of χ is a scalar multiple of $\nu \chi^{-1}$. What is that scalar? The usual calculation uses suitably chosen test functions to answer this, but with the prospect of similar if more difficult calculations in mind, I'll do something a bit different.
Formally, we have

$$
\begin{aligned}
\int_{k} \chi(x)|x|^{-1} \widehat{f}(x) d x & =\int_{k} \chi(x)|x|^{-1}\left(\int_{k} \psi(-y x) f(y) d y\right) d x \\
& =\int_{k} f(y)\left(\int_{k} \psi(-x y) \chi(x)|x|^{-1} d x\right) d y
\end{aligned}
$$

Making sense of this poses two problems. First of all, to calculate the factor $\gamma_{\psi}(\chi)$ such that the integral

$$
\int_{k} \psi(-x y) \chi(x)|x|^{-1} d x
$$

make sense and is equal to

$$
\gamma_{\psi}(\chi) \chi^{-1}(y) .
$$

Second, to justify the manipulation of integrals. The crucial step is this:
4.2. Lemma. If $|y|=q^{-m}$ and $\mathfrak{f}=\mathfrak{p}^{f}$ is the conductor of χ, then

$$
\int_{\mathfrak{p}^{n}} \psi(-x y) \chi(x) d^{\times} x=\int_{\mathfrak{p}^{-\delta-m-f}} \psi(-x y) \chi(x) d^{\times} x
$$

for $n \leq-\delta-m-f$.

I'll prove this at the same time I calculate the integral explicitly.
4.3. Lemma. If $y \sim \varpi^{m}$ then

$$
\int_{\mathfrak{p}^{k}} \psi(-x y) d x= \begin{cases}q^{-k-\delta / 2} & \text { if } m \geq-\delta-k \\ 0 & \text { if } m \leq-\delta-k-1\end{cases}
$$

Now I begin the proof of Lemma 4.2. Say $y=\varpi^{m} u$ with u in \mathfrak{o}^{\times}.
Unramified. Assume $n \gg 0, \chi=|x|^{s}$.

$$
\begin{aligned}
\int_{\mathfrak{p}^{n}} \psi(-x y) & \chi(x)|x|^{-1} d x \\
& =\sum_{k \geq n}\left(\int_{\mathfrak{p}^{k}-\mathfrak{p}^{k+1}} \psi(-x y) \chi(x)|x|^{-1} d x\right) \\
& =\sum_{k \geq n} q^{-k s} q^{k}\left(\int_{\mathfrak{p}^{k}-\mathfrak{p}^{k+1}} \psi(-x y) d x\right) \\
& =\sum_{k \geq n} q^{-k s} q^{k}\left(\int_{\mathfrak{p}^{k}} \psi(-x y) d x\right)-\sum_{k \geq n} q^{-k s} q^{k}\left(\int_{\mathfrak{p}^{k+1}} \psi(-x y) d x\right) \\
& =\sum_{k \geq n} q^{-k s} q^{k}\left(\int_{\mathfrak{p}^{k}} \psi(-x y) d x\right)-\sum_{\ell \geq n+1} q^{-(\ell-1) s} q^{\ell-1}\left(\int_{\mathfrak{p}^{\ell}} \psi(-x y) d x\right) \\
& =\sum_{k \geq n} q^{-k s} q^{k}\left(\int_{\mathfrak{p}^{k}} \psi(-x y) d x\right)-\sum_{\ell \geq n+1} q^{-\ell s} q^{s-1} q^{\ell}\left(\int_{\mathfrak{p}^{\ell}} \psi(-x y) d x\right) \\
& =\sum_{k \geq-\delta-m} q^{-k s-\delta / 2}-\sum_{\ell \geq-\delta-m} q^{-\ell s-\delta / 2} q^{s-1} \\
& =\left(1-q^{-(1-s)}\right) \cdot \frac{q^{(\delta+m) s-\delta / 2}}{1-q^{-s}} \\
& =\chi^{-1}(y) \cdot q^{\delta(s-1 / 2)} \cdot \frac{1-q^{-(1-s)}}{1-q^{-s}} \\
& =\gamma_{\psi}(\chi) \cdot \frac{|y| \chi^{-1}(y)}{|y|} .
\end{aligned}
$$

Ramified. Say χ has conductor \mathfrak{p}^{f}.

$$
\begin{aligned}
\int_{\mathfrak{p}^{n}} \psi(-x y) & \chi(x)|x|^{-1} d x \\
& =\sum_{k \geq n}\left(\int_{\mathfrak{p}^{k}-\mathfrak{p}^{k+1}} \psi(-x y) \chi(x) d x /|x|\right) \\
& =\sum_{k \geq n} q^{-k s}\left(\int_{\mathfrak{o}^{\times}} \psi\left(-\varpi^{k} u y\right) \chi(u) d u\right) \\
& =\sum_{k \geq n} q^{-k s}\left(\int_{\mathfrak{o}^{\times}} \psi\left(-\varpi^{k+m} u \varepsilon\right) \chi(u) d u\right) \\
& =\sum_{k \geq n} q^{-k s} \chi^{-1}(\varepsilon)\left(\int_{\mathfrak{o} \times} \psi\left(-\varpi^{k+m} u\right) \chi(u) d u\right)
\end{aligned}
$$

If $\ell=k+m$ the inner integral is

$$
\int_{\mathfrak{o} \times} \psi\left(\varpi^{\ell} u\right) \chi(u) d u=0
$$

It is a kind of Gauss sum.
There are now four cases to consider.

- We have $\ell \geq-\delta$. Then $\psi\left(-\varpi^{\ell} u\right)=1$ identically, and the integral vanishes since χ is a nontrivial character.
- We have $-\delta-f<\ell<\delta$. The integral again vanishes since χ is non-trivial on each subgroup ($1+\mathfrak{p}^{i}$).
-We have $\ell=-\delta-f$. The integral is the finite Gauss sum $\mathfrak{g}_{\psi}(\chi)$, and the corresponding term in the sum is

$$
\chi^{-1}(y)(\mathrm{N} \mathfrak{O N f})^{s-1 / 2} \mathfrak{g}_{\psi}(\chi) .
$$

- We have $\ell<-\delta-f$. The character $\psi\left(\varpi^{\ell} u\right.$ is non-trivial on each coset $u\left(1+\mathfrak{p}^{f}\right)$, and χ is constant on one of these, so the integral vanishes.
This concludes the proof of Lemma 4.2.
4.4. Theorem. We have

$$
\widehat{\chi}=\gamma_{\psi}(\chi) \nu \chi^{-1}
$$

for some scalar $\gamma_{\psi}(\chi)$. If $\chi(x)=|x|^{s}$ then

$$
\gamma_{\psi}(\chi)=\mathrm{Nd}^{s-1 / 2} \cdot \frac{1-q^{-(1-s)}}{1-q^{-s}} .
$$

If χ has conductor $\mathfrak{f}=\mathfrak{p}^{f}$ then

$$
\gamma_{\psi}(\chi)=(\mathrm{N} \mathfrak{d N f})^{s-1 / 2} \mathfrak{g}_{\psi}(\chi) .
$$

Proof. Assume $\mathrm{RE}(s)>0$. Choose f in $\mathcal{S}\left(k^{\times}\right)$. Then

$$
\begin{aligned}
\int_{k} \widehat{f}(x) & \chi(x)|x|^{-1} d x \\
& =\int_{\mathfrak{p}^{n}} \widehat{f}(x) \chi(x)|x|^{-1} d x \\
& =\int_{\mathfrak{p}^{n}}\left(\int_{\mathfrak{p}^{n}} f(y) \psi(-x y) d y\right) \chi(x)|x|^{-1} d x
\end{aligned}
$$

for $n, r \ll 0$. All integrals are bounded, so there is no problem reversing the order of integration, and this is

$$
\int_{\mathfrak{p}^{n}} f(y)\left(\int_{\mathfrak{p}^{n}} \psi(-x y) \chi(x)|x|^{-1} d x\right) d y
$$

Since $f(0)=0$, we have an upper bound on m, and then Lemma 4.2 tells us that for $n \gg 0$ the inner integral is independent of n and equal to what it should be.
Remarks. The usual proof uses special test functions, whereas this one gets by with a somewhat arbitrary choice. This is perhaps only a curiousity. For global applications, one cannot escape special choices, because evaluating adelic integrals requires it.

5. References

1. J. W. S. Cassels and A. Fröhlich (editors), Algebraic number theory, Thompson Book Company, 1967.
2. John Tate, 'Fourier analysis in number fields and Hecke's zeta-functions', pp. 305-347 in [CasselsFröhlich:1967]. (This is the first publication of Tate's Princeton thesis, dated 1951.)
3. André Weil, 'Fonctions zêta et distributions', pages 158-163 in Collected Papers III, Springer, 1979. (See also Weil's comments about this on pp. 448-49.)
