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A character χ of the multiplicative group of a local field k defines a distribution ϕ = ϕχ on that group:

〈ϕ, f〉 =
∫

k×

χ(x)f(x) d×x .

It satisfies the functional equation
µaϕ = χ(a)ϕ ,

which means that ϕ is χequivariant. Up to scalar multiplication, it is unique with respect to that
property.

The multiplicative group k× is an open set in k, and the Schwartz space of k× is embedded into that

of k. Under what circumstances does ϕ on k× extend to a χequivariant tempered distribution on k?

What does the space of all χequivariant distributions on k look like? What is the Fourier transform of
the distribution ϕχ?

This material originated in [Tate:1951/1967], but the approach here amounts to working out details

suggested in [Weil:1967]. What is slightly new is that the computation of the Fourier transform of χ is
not quite the usual one.
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Let
k = a nonArchimedean local field

o = integers in k

p = prime ideal of o

d = different of the extension k/Qp

= inverse of {x ∈ k | tracek/Qp
(xo) ⊆ Zp}

= (say) pδ

̟ = generator of p

ν = the multiplicative character x 7→ |x|
Fq = o/p .

For an ideal a ⊆ o let Na = |o/a|. For example, Np = q.

There is a canonical embedding of Qp/Zp into the quotient Q/Z, identifying it with the ptorsion. For

every x in Qp there exists a unique fractionm/pk such that x−m/pk is in Zp. The integerm is uniquely
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determined modulo pk, and x 7→ ψp(x) = e2πim/p
k

is well defined, and determines a character of Qp
whose kernel is Zp. The map

x 7−→ ψ(x) = ψp(tracek/Qp
(x))

is a character of k such that

d−1 = {x ∈ k |ψ(xo) = 1} .
The character ψ(x/̟δ+m) is a primitive character of o/pm.

Choose the measure on k such that

meas(o) = |o/d|−1/2 = q−δ/2 .

The measure d×x = dx/|x| is a multiplicatively invariant measure on k×.

1. Characters as distributions on the multiplicative group

The Schwartz space S(k×) is the vector space of all locally constant complexvalued functions of

compact support on k×. The multiplicative group acts on it by right multiplication:

ρaf(x) = f(xa) .

A distribution on k× is any linear functional on its Schwartz space. The group k× acts by the usual
duality formula on the linear dual of S(k×), the space of distributions:

〈ρaϕ, f〉 = 〈ϕ, ρa−1f〉 .

The integral

〈ϕχ, f〉 =
∫

k×

f(x)χ(x) d×x =

∫

k×

f(x)χ(x)|x|−1 dx .

defines a χequivariant distribution on k×. It is essentially unique:

1.1. Theorem. Every distribution ϕ on k× satisfying the functional equation ρaϕ = χ(a)ϕ is a multiple
of ϕχ.

Proof. Suppose ϕ to be such a distribution. If χ = 1 on 1 + pf , then

〈ϕ, f〉 = 〈ϕ, f∗〉

where

f∗(x) =
1

meas(1 + pf )
·
∫

1+pf

f(xu) du .

Therefore ϕ amounts to integration against

F (x) =
〈ϕ, charx(1+pf )〉
meas(1 + pf )

.

We have a short exact sequence

1 −→ o× −→ k× −→ k×/o× −→ 1
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The map from 〈̟〉 to the quotient is an isomorphism, so the quotient is isomorphic to the group of

powers of ̟, isomorphic to Z. This isomorphism does not depend on the choice of ̟, and I’ll call the
image of ̟ in the quotient a canonical generator of it. I’ll write it as p×.

A character of k× trivial on o×, or equivalently a character of k×/o×, is said to be unramified. It is
determined by the image of̟, which can be any nonzero complex number z. It is often convenient to

write it as |x|s with s in C, but since |x| = q−n if x = ̟n we have

|x|s = q−ns = e−ns log q

so s is only determined up to a term 2πin/ log q. Nonetheless, because of global considerations it is

convenient to use s as a parameter.

A splitting of the exact sequence above is determined by a single element of k× whose image in k×/o×

is p× or, equivalently, a generator of p. There is no best choice, in spite of personal prejudices. Given
a generator ̟ of p, one can factor any x in k× as u · ̟n, thus factoring k× = o× × 〈̟〉. In these

circumstances one can write any character of k× uniquely as σ(x) · zord(x), where σ(̟) = 1 and z lies
in C×.

Remark. Suppose f to lie in S(k×), χ(x) = ω(x) · zord(x). Then 〈χ, f〉 is a polynomial in z±1 (i.e. a
Laurent polynomial in z.

2. As distributions on the additive group

The Schwartz space of k is that of all locally constant, complexvalued functions of compact support

on k. We have an exact sequence of vector spaces

(2.1) 0 −→ S(k×) −→ S(k) f 7→f(0)−→ C −→ 0 .

The group k× acts on all of these compatibly—on the first two by ρ and on the last trivially. The
triviality means that the image of each ρaf − f in C is 0. Given χ, integration gives us a χequivariant

distribution ϕχ on k×. Does it extend to a distribution on k? Is the extension unique?

If f lies in S(k), then f − f(0)charo lies in S(k×). Evaluating 〈ϕχ, f〉 therefor reduces to evaluating

〈ϕχ, charo〉. But if z = χ(̟) and |z| < 1 we can write

〈ϕχ, charo〉 =
∫

o

χ(x)|x|−1 dx

=
∑∞

k=0

∫

pk−pk+1

χ(x)|x|−1 dx

=

(∫

o×

χ(x) dx

)(∑∞

k=0
zk

)
,

which certainly converges, and defines an equivariant extension.

2.2. Theorem. If χ 6= 1 there is a unique extension. If χ = 1 there is none, and the Dirac distribution

δ0: f 7−→ f(0)

spans the space of distributions ϕ such that ρaϕ = ϕ for all a.

Proof. Since k× acts trivially on S(k)/S(k×), any extension is certainly unique.
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Suppose at first that ϕ did satisfy ρaϕ = χ(a)ϕ. Then

〈ρaϕ, f〉 = 〈ϕ, ρa−1f〉 = χ(a)〈ϕ, f〉
so 〈ϕ, ρa−1f − f〉 = (χ(a)− 1)〈ϕ, f〉 and

(2.3) 〈ϕ, f〉 = 〈ϕ, ρa−1f − f〉
χ(a)− 1

.

as long as χ(a) 6= 1. But this can be used to specify ϕ, as long as χ! = 1. For any a ρa−1f − f lies in

the Schwartz space of k×, so the numerator is always defined, and if we choose a with χ(a)! = 1 this
formula will define a suitable distribution.

If χ = 1, the argument fails, and in fact there is no extension to k. For suppose ϕ were one. Let f be
the characteristic function of some small neighbourhood of 0. Then on the one hand

〈ϕ, ρ̟−1f〉 = 〈ϕ, f〉, 〈ϕ, ρ̟−1f − f〉 = 0 ,

but on the other

〈ϕ, ρ̟−1f − f〉 =
∫

k×

(
f(x)− f(̟−1x)

)
d×x 6= 0 .

Remark. There is another way to look at the same problem. Choose a fixed ϕ∗ in S(k) with ϕ∗(0) = 1.
Then for every ϕ in S(k) the function ϕ− ϕ(0) · ϕ∗ will lie in S(k×). The integral

∫

k×

χ(x)
(
ϕ(x)− ϕ(0) · ϕ∗(x)

)
d×x

defines a distribution that extends χ on S(k×). It is not the only such extension, since we can always

add a multiple of δ0 to it without modifying its effect on S(k×). So in looking for a χequivariant
extension of χ we are looking for a distribution

〈ϕ,ϕ〉 =
∫

k×

χ(x)
(
ϕ(x)− ϕ(0) · ϕ#

)
d×x+ cχϕ(0)

such that ρaϕ = χ(a)ϕ for all a.

I leave as exercise to find the constant cχ making ϕ a χequivariant distribution.

◦ ———— ◦

Example. Suppose χ(x) = |x|s = zord(x) and f is the characteristic function of o. What is 〈χ, f〉? For
RE(s) > 0

〈χ, f〉 =
∫

o

|x|−s−1 dx

=
∑

k≥0

∫

pk−p−(k+1)

|x|s dx/|x|

=
∑

k≥0
q−ks =

1

1− q−s
.

The residue of the distribution |x|s at s = 0 is a multiple of the Dirac δ0.

Remark. It is potentially useful to consider these results in light of the long exact sequence of
cohomology derived from (2.1) :

0 −→ Homk×(C,C) −→ Homk×(S(k),C) −→ Homk×(S(k×),C) −→ Extk×(C,C) −→ . . .
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3. Analysis on finite rings

Let r = o/pn for some n > 0. For the moment, suppose ω to be any primitive additive character of r,

for example
x 7−→ ψ(x/̟δ+n) .

The Fourier transform on C[r] is

f̂(y) =
1√
Nr

·
∑

ω(−xy)f(x) .

It is an isometry of L2(r) with itself.

If χ is a multiplicative character of o×, it is said to have conductor pr is χ is trivial on 1 + pr but not

on 1 + pr−1. If χ has conductor pr, extend it to be a function on all of r by setting χ(x) = 0 for x not a
unit. This extension is, up to scalar factor, the unique χequivariant function on r.

In this situation, define

g(χ) =
1√
Nr

·
∑

r
ω(−x)χ(x) .

The following is easy to verify:

3.1. Proposition. The Fourier transform of χ is g(χ)χ−1.

3.2. Corollary. We have |g(χ)| = 1.

Proof. Because the L2 norm of the Fourier transform of χ is equal to that of χ.

4. The Fourier transform

The formula

f̂(y) =

∫

k

ψ(−xy)f(x) dx

defines a Fourier transform on S(k), which is an isomorphism of S(k)with itself. With the given choice
of measure, the Fourier transform of charo is Nd−1/2chard−1 , and viceversa.

For two functions f , ϕ in S(k)

〈ϕ̂, f〉 = 〈ϕ, f̂〉 .

When ϕ is a distribution, this defines the Fourier transform of ϕ.

How does the Fourier transform interact with the action of k×?

4.1. Lemma. For any distribution ϕ

〈ρcϕ̂, f〉 = |c|〈ρ̂1/cϕ, f〉 .
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Proof. For any f in S(k)

ρ̂1/cf(y) =

∫

k

ψ(−xy)f(x/c) dx

=

∫

k

ψ(−zcy)f(z) dcz

= |c|f̂(cy) ,

and ρ̂1/cf = |c|ρcf̂ . Hence for a distribution ϕ

〈ρcϕ̂, f〉 = 〈ϕ̂, ρ(1/c)f〉
= 〈ϕ, ̂ρ(1/c)f〉
= 〈ϕ, |c|ρcf̂〉
= |c|〈ϕ, ρcf̂〉
= |c|〈ρ1/cϕ, f̂〉
= |c|〈ρ̂1/cϕ, f〉 .

If ϕ is χequivariant, this gives us

ρcϕ̂ = |c|χ−1(c)ϕ̂ ,

so that ϕ̂ is equivariant for νχ−1. Since the space of χequivariant distributions has dimension one,
this implies that the Fourier transform of χ is a scalar multiple of νχ−1. What is that scalar? The usual

calculation uses suitably chosen test functions to answer this, but with the prospect of similar if more
difficult calculations in mind, I’ll do something a bit different.

Formally, we have

∫

k

χ(x)|x|−1f̂(x) dx =

∫

k

χ(x)|x|−1

(∫

k

ψ(−yx)f(y) dy
)
dx

=

∫

k

f(y)

(∫

k

ψ(−xy)χ(x)|x|−1 dx

)
dy .

Making sense of this poses two problems. First of all, to calculate the factor γψ(χ) such that the integral

∫

k

ψ(−xy)χ(x)|x|−1 dx

make sense and is equal to
γψ(χ)χ

−1(y) .

Second, to justify the manipulation of integrals. The crucial step is this:

4.2. Lemma. If |y| = q−m and f = pf is the conductor of χ, then

∫

pn

ψ(−xy)χ(x) d×x =

∫

p−δ−m−f

ψ(−xy)χ(x) d×x

for n ≤ −δ −m− f .
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I’ll prove this at the same time I calculate the integral explicitly.

4.3. Lemma. If y ∼ ̟m then

∫

pk

ψ(−xy) dx =

{
q−k−δ/2 if m ≥ −δ − k
0 if m ≤ −δ − k − 1.

Now I begin the proof of Lemma 4.2. Say y = ̟mu with u in o×.

Unramified. Assume n≫ 0, χ = |x|s.
∫

pn

ψ(−xy)χ(x)|x|−1 dx

=
∑

k≥n

(∫

pk−pk+1

ψ(−xy)χ(x)|x|−1 dx

)

=
∑

k≥n
q−ksqk

(∫

pk−pk+1

ψ(−xy) dx
)

=
∑

k≥n
q−ksqk

(∫

pk

ψ(−xy) dx
)
−

∑
k≥n

q−ksqk
(∫

pk+1

ψ(−xy) dx
)

=
∑

k≥n
q−ksqk

(∫

pk

ψ(−xy) dx
)
−

∑
ℓ≥n+1

q−(ℓ−1)sqℓ−1

(∫

pℓ

ψ(−xy) dx
)

=
∑

k≥n
q−ksqk

(∫

pk

ψ(−xy) dx
)
−

∑
ℓ≥n+1

q−ℓsqs−1qℓ
(∫

pℓ

ψ(−xy) dx
)

=
∑

k≥−δ−m
q−ks−δ/2 −

∑
ℓ≥−δ−m

q−ℓs−δ/2qs−1

=
(
1− q−(1−s)

)
· q

(δ+m)s−δ/2

1− q−s

= χ−1(y) ·qδ(s−1/2) · 1− q−(1−s)

1− q−s

= γψ(χ) ·
|y|χ−1(y)

|y| .

Ramified. Say χ has conductor pf .

∫

pn

ψ(−xy)χ(x)|x|−1 dx

=
∑

k≥n

(∫

pk−pk+1

ψ(−xy)χ(x) dx/|x|
)

=
∑

k≥n
q−ks

(∫

o×

ψ(−̟kuy)χ(u) du

)

=
∑

k≥n
q−ks

(∫

o×

ψ(−̟k+muε)χ(u) du

)

=
∑

k≥n
q−ksχ−1(ε)

(∫

o×

ψ(−̟k+mu)χ(u) du

)
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If ℓ = k +m the inner integral is ∫

o×

ψ(̟ℓu)χ(u) du = 0

It is a kind of Gauss sum.

There are now four cases to consider.

• We have ℓ ≥ −δ. Then ψ(−̟ℓu) = 1 identically, and the integral vanishes since χ is a nontrivial
character.

• We have −δ−f < ℓ < δ. The integral again vanishes since χ is nontrivial on each subgroup (1+pi).

• We have ℓ = −δ − f . The integral is the finite Gauss sum gψ(χ), and the corresponding term in the

sum is

χ−1(y)(NdNf)s−1/2gψ(χ) .

• We have ℓ < −δ − f . The character ψ(̟ℓu is nontrivial on each coset u(1 + pf ), and χ is constant
on one of these, so the integral vanishes.

This concludes the proof of Lemma 4.2.

4.4. Theorem. We have
χ̂ = γψ(χ)νχ

−1

for some scalar γψ(χ). If χ(x) = |x|s then

γψ(χ) = Nds−1/2 · 1− q−(1−s)

1− q−s
.

If χ has conductor f = pf then
γψ(χ) = (NdNf)s−1/2gψ(χ) .

Proof. Assume RE(s) > 0. Choose f in S(k×). Then

∫

k

f̂(x)χ(x)|x|−1 dx

=

∫

pn

f̂(x)χ(x)|x|−1 dx

=

∫

pn

(∫

pr

f(y)ψ(−xy) dy
)
χ(x)|x|−1 dx

for n, r ≪ 0. All integrals are bounded, so there is no problem reversing the order of integration, and

this is ∫

pr

f(y)

(∫

pn

ψ(−xy)χ(x)|x|−1 dx

)
dy .

Since f(0) = 0, we have an upper bound on m, and then Lemma 4.2 tells us that for n ≫ 0 the inner
integral is independent of n and equal to what it should be.

Remarks. The usual proof uses special test functions, whereas this one gets by with a somewhat

arbitrary choice. This is perhaps only a curiousity. For global applications, one cannot escape special
choices, because evaluating adelic integrals requires it.



padic characters 9

5. References
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