Characters as tempered distributions: *p*-adic fields

Bill Casselman University of British Columbia cass@math.ubc.ca

A character χ of the multiplicative group of a local field k defines a distribution $\varphi = \varphi_{\chi}$ on that group:

$$\langle \varphi, f \rangle = \int_{k^{\times}} \chi(x) f(x) d^{\times} x.$$

It satisfies the functional equation

$$\mu_a \varphi = \chi(a) \varphi \,,$$

which means that φ is χ -equivariant. Up to scalar multiplication, it is unique with respect to that property.

The multiplicative group k^{\times} is an open set in k, and the Schwartz space of k^{\times} is embedded into that of k. Under what circumstances does φ on k^{\times} extend to a χ -equivariant tempered distribution on k? What does the space of all χ -equivariant distributions on k look like? What is the Fourier transform of the distribution φ_{χ} ?

This material originated in [Tate:1951/1967], but the approach here amounts to working out details suggested in [Weil:1967]. What is slightly new is that the computation of the Fourier transform of χ is not quite the usual one.

Contents

1. Characters as distributions on the multiplicative group	3
2. As distributions on the additive group	4
3. Analysis on finite rings	6
4. The Fourier transform	7
5. References	11

Let

$$k = a \text{ non-Archimedean local field}$$

$$\mathfrak{o} = \text{ integers in } k$$

$$\mathfrak{p} = \text{ prime ideal of } \mathfrak{o}$$

$$\mathfrak{d} = \text{ different of the extension } k/\mathbb{Q}_p$$

$$= \text{ inverse of } \{x \in k \mid \text{trace}_{k/\mathbb{Q}_p}(x\mathfrak{o}) \subseteq \mathbb{Z}_p\}$$

$$= (\text{say}) \mathfrak{p}^{\delta}$$

$$\varpi = \text{ generator of } \mathfrak{p}$$

$$\nu = \text{ the multiplicative character } x \mapsto |x|$$

$$\mathbb{F}_q = \mathfrak{o}/\mathfrak{p}.$$

For an ideal $\mathfrak{a} \subseteq \mathfrak{o}$ let $\mathbb{N}\mathfrak{a} = |\mathfrak{o}/\mathfrak{a}|$. For example, $\mathbb{N}\mathfrak{p} = q$.

There is a canonical embedding of $\mathbb{Q}_p/\mathbb{Z}_p$ into the quotient \mathbb{Q}/\mathbb{Z} , identifying it with the *p*-torsion. For every x in \mathbb{Q}_p there exists a unique fraction m/p^k such that $x - m/p^k$ is in \mathbb{Z}_p . The integer m is uniquely determined modulo p^k , and $x \mapsto \psi_p(x) = e^{2\pi i m/p^k}$ is well defined, and determines a character of \mathbb{Q}_p whose kernel is \mathbb{Z}_p . The map

$$x \mapsto \psi(x) = \psi_p(\operatorname{trace}_{k/\mathbb{Q}_p}(x))$$

is a character of k such that

$$\mathfrak{d}^{-1} = \{ x \in k \, | \, \psi(x\mathfrak{o}) = 1 \} \, .$$

The character $\psi(x/\varpi^{\delta+m})$ is a primitive character of $\mathfrak{o}/\mathfrak{p}^m$.

Choose the measure on k such that

meas(
$$\mathfrak{o}$$
) = $|\mathfrak{o}/\mathfrak{d}|^{-1/2} = q^{-\delta/2}$.

The measure $d^{\times}x = dx/|x|$ is a multiplicatively invariant measure on k^{\times} .

1. Characters as distributions on the multiplicative group

The Schwartz space $S(k^{\times})$ is the vector space of all locally constant complex-valued functions of compact support on k^{\times} . The multiplicative group acts on it by right multiplication:

$$\rho_a f(x) = f(xa) \, .$$

A distribution on k^{\times} is any linear functional on its Schwartz space. The group k^{\times} acts by the usual duality formula on the linear dual of $S(k^{\times})$, the space of distributions:

$$\langle \rho_a \varphi, f \rangle = \langle \varphi, \rho_{a^{-1}} f \rangle.$$

The integral

$$\langle \varphi \chi, f \rangle = \int_{k^{\times}} f(x) \chi(x) \, d^{\times} x = \int_{k^{\times}} f(x) \chi(x) |x|^{-1} \, dx$$

defines a χ -equivariant distribution on k^{\times} . It is essentially unique:

1.1. Theorem. Every distribution φ on k^{\times} satisfying the functional equation $\rho_a \varphi = \chi(a)\varphi$ is a multiple of φ_{χ} .

Proof. Suppose φ to be such a distribution. If $\chi = 1$ on $1 + \mathfrak{p}^f$, then

$$\langle \varphi, f \rangle = \langle \varphi, f_* \rangle$$

where

$$f_*(x) = \frac{1}{\operatorname{meas}(1 + \mathfrak{p}^f)} \cdot \int_{1 + \mathfrak{p}^f} f(xu) \, du \, .$$

Therefore φ amounts to integration against

$$F(x) = \frac{\langle \varphi, \mathfrak{char}_{x(1+\mathfrak{p}^f)} \rangle}{\operatorname{meas}(1+\mathfrak{p}^f)} \,.$$

We have a short exact sequence

$$1 \longrightarrow \mathfrak{o}^{\times} \longrightarrow k^{\times} \longrightarrow k^{\times}/\mathfrak{o}^{\times} \longrightarrow 1$$

The map from $\langle \varpi \rangle$ to the quotient is an isomorphism, so the quotient is isomorphic to the group of powers of ϖ , isomorphic to \mathbb{Z} . This isomorphism does not depend on the choice of ϖ , and I'll call the image of ϖ in the quotient a **canonical generator** of it. I'll write it as \mathfrak{p}^{\times} .

A character of k^{\times} trivial on \mathfrak{o}^{\times} , or equivalently a character of $k^{\times}/\mathfrak{o}^{\times}$, is said to be **unramified**. It is determined by the image of ϖ , which can be any non-zero complex number z. It is often convenient to write it as $|x|^s$ with s in \mathbb{C} , but since $|x| = q^{-n}$ if $x = \varpi^n$ we have

$$|x|^s = q^{-ns} = e^{-ns\log q}$$

so *s* is only determined up to a term $2\pi i n / \log q$. Nonetheless, because of global considerations it is convenient to use *s* as a parameter.

A splitting of the exact sequence above is determined by a single element of k^{\times} whose image in $k^{\times}/\mathfrak{o}^{\times}$ is \mathfrak{p}^{\times} or, equivalently, a generator of \mathfrak{p} . There is no best choice, in spite of personal prejudices. Given a generator ϖ of \mathfrak{p} , one can factor any x in k^{\times} as $u \cdot \varpi^n$, thus factoring $k^{\times} = \mathfrak{o}^{\times} \times \langle \varpi \rangle$. In these circumstances one can write any character of k^{\times} uniquely as $\sigma(x) \cdot z^{\operatorname{ord}(x)}$, where $\sigma(\varpi) = 1$ and z lies in \mathbb{C}^{\times} .

Remark. Suppose f to lie in $S(k^{\times})$, $\chi(x) = \omega(x) \cdot z^{\operatorname{ord}(x)}$. Then $\langle \chi, f \rangle$ is a polynomial in $z^{\pm 1}$ (i.e. a Laurent polynomial in z.

2. As distributions on the additive group

The Schwartz space of k is that of all locally constant, complex-valued functions of compact support on k. We have an exact sequence of vector spaces

(2.1)
$$0 \longrightarrow \mathcal{S}(k^{\times}) \longrightarrow \mathcal{S}(k) \xrightarrow{f \mapsto f(0)} \mathbb{C} \longrightarrow 0.$$

The group k^{\times} acts on all of these compatibly—on the first two by ρ and on the last trivially. The triviality means that the image of each $\rho_a f - f$ in \mathbb{C} is 0. Given χ , integration gives us a χ -equivariant distribution φ_{χ} on k^{\times} . Does it extend to a distribution on k? Is the extension unique?

If f lies in S(k), then f - f(0)char_o lies in $S(k^{\times})$. Evaluating $\langle \varphi_{\chi}, f \rangle$ therefor reduces to evaluating $\langle \varphi_{\chi}, \mathfrak{char}_{\mathfrak{o}} \rangle$. But if $z = \chi(\varpi)$ and |z| < 1 we can write

$$\begin{split} \langle \varphi_{\chi}, \mathfrak{char}_{\mathfrak{o}} \rangle &= \int_{\mathfrak{o}} \chi(x) |x|^{-1} \, dx \\ &= \sum_{k=0}^{\infty} \int_{\mathfrak{p}^{k} - \mathfrak{p}^{k+1}} \chi(x) |x|^{-1} \, dx \\ &= \left(\int_{\mathfrak{o}^{\times}} \chi(x) \, dx \right) \left(\sum_{k=0}^{\infty} z^{k} \right) \,, \end{split}$$

which certainly converges, and defines an equivariant extension.

2.2. Theorem. If $\chi \neq 1$ there is a unique extension. If $\chi = 1$ there is none, and the Dirac distribution

$$\delta_0: f \longmapsto f(0)$$

spans the space of distributions φ such that $\rho_a \varphi = \varphi$ for all a.

Proof. Since k^{\times} acts trivially on $S(k)/S(k^{\times})$, any extension is certainly unique.

Suppose at first that φ did satisfy $\rho_a \varphi = \chi(a) \varphi$. Then

$$\langle \rho_a \varphi, f \rangle = \langle \varphi, \rho_{a^{-1}} f \rangle = \chi(a) \langle \varphi, f \rangle$$

so $\langle \varphi, \rho_{a^{-1}}f-f\rangle = (\chi(a)-1)\langle \varphi, f\rangle$ and

(2.3)
$$\langle \varphi, f \rangle = \frac{\langle \varphi, \rho_{a^{-1}}f - f \rangle}{\chi(a) - 1}.$$

as long as $\chi(a) \neq 1$. But this can be used to **specify** φ , as long as $\chi! = 1$. For any $a \rho_{a^{-1}} f - f$ lies in the Schwartz space of k^{\times} , so the numerator is always defined, and if we choose a with $\chi(a)! = 1$ this formula will define a suitable distribution.

If $\chi = 1$, the argument fails, and in fact there is no extension to k. For suppose φ were one. Let f be the characteristic function of some small neighbourhood of 0. Then on the one hand

$$\langle \varphi, \rho_{\varpi^{-1}} f \rangle = \langle \varphi, f \rangle, \quad \langle \varphi, \rho_{\varpi^{-1}} f - f \rangle = 0,$$

but on the other

$$\langle \varphi, \rho_{\varpi^{-1}} f - f \rangle = \int_{k^{\times}} \left(f(x) - f(\varpi^{-1}x) \right) d^{\times}x \neq 0.$$

Remark. There is another way to look at the same problem. Choose a fixed φ_* in S(k) with $\varphi_*(0) = 1$. Then for every φ in S(k) the function $\varphi - \varphi(0) \cdot \varphi_*$ will lie in $S(k^{\times})$. The integral

$$\int_{k^{\times}} \chi(x) \big(\varphi(x) - \varphi(0) \cdot \varphi_*(x) \big) \, d^{\times} x$$

defines a distribution that extends χ on $S(k^{\times})$. It is not the only such extension, since we can always add a multiple of δ_0 to it without modifying its effect on $S(k^{\times})$. So in looking for a χ -equivariant extension of χ we are looking for a distribution

$$\langle \varphi, \varphi \rangle = \int_{k^{\times}} \chi(x) \big(\varphi(x) - \varphi(0) \cdot \varphi_{\#} \big) \, d^{\times} x + c_{\chi} \varphi(0)$$

such that $\rho_a \varphi = \chi(a) \varphi$ for all *a*.

I leave as exercise to find the constant c_{χ} making φ a χ -equivariant distribution.

Example. Suppose $\chi(x) = |x|^s = z^{\operatorname{ord}(x)}$ and f is the characteristic function of \mathfrak{o} . What is $\langle \chi, f \rangle$? For $\operatorname{RE}(s) > 0$

$$\begin{split} \langle \chi, f \rangle &= \int_{\mathfrak{o}} |x|^{-s-1} \, dx \\ &= \sum_{k \ge 0} \int_{\mathfrak{p}^k - \mathfrak{p}^{-(k+1)}} |x|^s \, dx/|x| \\ &= \sum_{k \ge 0} q^{-ks} = \frac{1}{1 - q^{-s}} \, . \end{split}$$

The residue of the distribution $|x|^s$ at s = 0 is a multiple of the Dirac δ_0 .

Remark. It is potentially useful to consider these results in light of the long exact sequence of cohomology derived from (2.1) :

$$0 \longrightarrow \operatorname{Hom}_{k^{\times}}(\mathbb{C}, \mathbb{C}) \longrightarrow \operatorname{Hom}_{k^{\times}}(\mathcal{S}(k), \mathbb{C}) \longrightarrow \operatorname{Hom}_{k^{\times}}(\mathcal{S}(k^{\times}), \mathbb{C}) \longrightarrow \operatorname{Ext}_{k^{\times}}(\mathbb{C}, \mathbb{C}) \longrightarrow \dots$$

3. Analysis on finite rings

Let $\mathfrak{r} = \mathfrak{o}/\mathfrak{p}^n$ for some n > 0. For the moment, suppose ω to be any primitive additive character of \mathfrak{r} , for example

$$x \mapsto \psi(x/\varpi^{\delta+n})$$

The Fourier transform on $\mathbb{C}[\mathfrak{r}]$ is

$$\widehat{f}(y) = \frac{1}{\sqrt{N\mathfrak{r}}} \cdot \sum \omega(-xy) f(x) \,.$$

It is an isometry of $L^2(\mathfrak{r})$ with itself.

If χ is a multiplicative character of \mathfrak{o}^{\times} , it is said to have **conductor** \mathfrak{p}^r is χ is trivial on $1 + \mathfrak{p}^r$ but not on $1 + \mathfrak{p}^{r-1}$. If χ has conductor \mathfrak{p}^r , extend it to be a function on all of \mathfrak{r} by setting $\chi(x) = 0$ for x not a unit. This extension is, up to scalar factor, the unique χ -equivariant function on \mathfrak{r} .

In this situation, define

$$\mathfrak{g}(\chi) = \frac{1}{\sqrt{N\mathfrak{r}}} \cdot \sum_{\mathfrak{r}} \omega(-x)\chi(x)$$

The following is easy to verify:

- **3.1. Proposition.** The Fourier transform of χ is $\mathfrak{g}(\chi)\chi^{-1}$.
- **3.2. Corollary.** We have $|\mathfrak{g}(\chi)| = 1$.

Proof. Because the L² norm of the Fourier transform of χ is equal to that of χ .

4. The Fourier transform

The formula

$$\widehat{f}(y) = \int_{k} \psi(-xy) f(x) \, dx$$

defines a Fourier transform on S(k), which is an isomorphism of S(k) with itself. With the given choice of measure, the Fourier transform of $char_{\mathfrak{o}}$ is $\mathrm{N}\mathfrak{d}^{-1/2}\mathfrak{char}_{\mathfrak{d}^{-1}}$, and *vice-versa*.

For two functions f, φ in $\mathcal{S}(k)$

$$\langle \widehat{\varphi}, f \rangle = \langle \varphi, \widehat{f} \rangle.$$

When φ is a distribution, this **defines** the Fourier transform of φ . How does the Fourier transform interact with the action of k^{\times} ? **4.1. Lemma.** For any distribution φ

$$\langle \rho_c \widehat{\varphi}, f \rangle = |c| \langle \widehat{\rho_{1/c} \varphi}, f \rangle.$$

Proof. For any f in $\mathcal{S}(k)$

$$\widehat{\rho_{1/c}f}(y) = \int_{k} \psi(-xy)f(x/c) \, dx$$
$$= \int_{k} \psi(-zcy)f(z) \, dcz$$
$$= |c|\widehat{f}(cy) \, ,$$

and $\widehat{\rho_{1/c}f} = |c|\rho_c\widehat{f}$. Hence for a distribution φ

$$\begin{split} \langle \rho_c \widehat{\varphi}, f \rangle &= \langle \widehat{\varphi}, \rho(1/c) f \rangle \\ &= \langle \varphi, \rho(1/c) f \rangle \\ &= \langle \varphi, |c| \rho_c \widehat{f} \rangle \\ &= |c| \langle \varphi, \rho_c \widehat{f} \rangle \\ &= |c| \langle \rho_{1/c} \varphi, \widehat{f} \rangle \\ &= |c| \langle \widehat{\rho_{1/c} \varphi}, f \rangle \,. \end{split}$$

If φ is χ -equivariant, this gives us

$$\rho_c \widehat{\varphi} = |c| \chi^{-1}(c) \widehat{\varphi} \,,$$

so that $\hat{\varphi}$ is equivariant for $\nu \chi^{-1}$. Since the space of χ -equivariant distributions has dimension one, this implies that the Fourier transform of χ is a scalar multiple of $\nu \chi^{-1}$. What is that scalar? The usual calculation uses suitably chosen test functions to answer this, but with the prospect of similar if more difficult calculations in mind, I'll do something a bit different.

Formally, we have

$$\begin{split} \int_k \chi(x)|x|^{-1}\widehat{f}(x)\,dx &= \int_k \chi(x)|x|^{-1}\left(\int_k \psi(-yx)f(y)\,dy\right)\,dx\\ &= \int_k f(y)\left(\int_k \psi(-xy)\chi(x)|x|^{-1}\,dx\right)\,dy\,. \end{split}$$

Making sense of this poses two problems. First of all, to calculate the factor $\gamma_{\psi}(\chi)$ such that the integral

$$\int_k \psi(-xy)\chi(x)|x|^{-1}\,dx$$

make sense and is equal to

$$\gamma_{\psi}(\chi)\chi^{-1}(y)$$

Second, to justify the manipulation of integrals. The crucial step is this:

4.2. Lemma. If $|y| = q^{-m}$ and $\mathfrak{f} = \mathfrak{p}^f$ is the conductor of χ , then

$$\int_{\mathfrak{p}^n} \psi(-xy)\chi(x) \, d^{\mathsf{X}}x = \int_{\mathfrak{p}^{-\delta-m-f}} \psi(-xy)\chi(x) \, d^{\mathsf{X}}x$$

for $n \leq -\delta - m - f$.

I'll prove this at the same time I calculate the integral explicitly.

4.3. Lemma. If $y \sim \varpi^m$ then

$$\int_{\mathfrak{p}^k} \psi(-xy) \, dx = \begin{cases} q^{-k-\delta/2} & \text{if } m \geq -\delta-k \\ 0 & \text{if } m \leq -\delta-k-1. \end{cases}$$

Now I begin the proof of Lemma 4.2. Say $y = \varpi^m u$ with u in \mathfrak{o}^{\times} . Unramified. Assume $n \gg 0$, $\chi = |x|^s$.

$$\begin{split} \int_{\mathfrak{p}^n} \psi(-xy)\chi(x)|x|^{-1} \, dx \\ &= \sum_{k \ge n} \left(\int_{\mathfrak{p}^k - \mathfrak{p}^{k+1}} \psi(-xy)\chi(x)|x|^{-1} \, dx \right) \\ &= \sum_{k \ge n} q^{-ks} q^k \left(\int_{\mathfrak{p}^k - \mathfrak{p}^{k+1}} \psi(-xy) \, dx \right) \\ &= \sum_{k \ge n} q^{-ks} q^k \left(\int_{\mathfrak{p}^k} \psi(-xy) \, dx \right) - \sum_{k \ge n} q^{-ks} q^k \left(\int_{\mathfrak{p}^{k+1}} \psi(-xy) \, dx \right) \\ &= \sum_{k \ge n} q^{-ks} q^k \left(\int_{\mathfrak{p}^k} \psi(-xy) \, dx \right) - \sum_{\ell \ge n+1} q^{-(\ell-1)s} q^{\ell-1} \left(\int_{\mathfrak{p}^\ell} \psi(-xy) \, dx \right) \\ &= \sum_{k \ge n} q^{-ks} q^k \left(\int_{\mathfrak{p}^k} \psi(-xy) \, dx \right) - \sum_{\ell \ge n+1} q^{-\ell s} q^{s-1} q^\ell \left(\int_{\mathfrak{p}^\ell} \psi(-xy) \, dx \right) \\ &= \sum_{k \ge -\delta - m} q^{-ks - \delta/2} - \sum_{\ell \ge -\delta - m} q^{-\ell s - \delta/2} q^{s-1} \\ &= (1 - q^{-(1-s)}) \cdot \frac{q^{(\delta+m)s - \delta/2}}{1 - q^{-s}} \\ &= \chi^{-1}(y) \cdot q^{\delta(s-1/2)} \cdot \frac{1 - q^{-(1-s)}}{1 - q^{-s}} \\ &= \gamma_{\psi}(\chi) \cdot \frac{|y|\chi^{-1}(y)}{|y|} \,. \end{split}$$

Ramified. Say χ has conductor \mathfrak{p}^f .

$$\begin{split} \int_{\mathfrak{p}^n} \psi(-xy)\chi(x)|x|^{-1} \, dx \\ &= \sum_{k \ge n} \left(\int_{\mathfrak{p}^k - \mathfrak{p}^{k+1}} \psi(-xy)\chi(x) \, dx/|x| \right) \\ &= \sum_{k \ge n} q^{-ks} \left(\int_{\mathfrak{o}^{\times}} \psi(-\varpi^k uy)\chi(u) \, du \right) \\ &= \sum_{k \ge n} q^{-ks} \left(\int_{\mathfrak{o}^{\times}} \psi(-\varpi^{k+m} u\varepsilon)\chi(u) \, du \right) \\ &= \sum_{k \ge n} q^{-ks} \chi^{-1}(\varepsilon) \left(\int_{\mathfrak{o}^{\times}} \psi(-\varpi^{k+m} u)\chi(u) \, du \right) \end{split}$$

If $\ell = k + m$ the inner integral is

$$\int_{\mathfrak{o}^{\times}} \psi(\varpi^{\ell} u) \chi(u) \, du = 0$$

It is a kind of Gauss sum.

There are now four cases to consider.

• We have $\ell \ge -\delta$. Then $\psi(-\varpi^{\ell}u) = 1$ identically, and the integral vanishes since χ is a nontrivial character.

• We have $-\delta - f < \ell < \delta$. The integral again vanishes since χ is non-trivial on each subgroup $(1 + \mathfrak{p}^i)$.

• We have $\ell = -\delta - f$. The integral is the finite Gauss sum $\mathfrak{g}_{\psi}(\chi)$, and the corresponding term in the sum is

$$\chi^{-1}(y)(\mathrm{N}\mathfrak{d}\mathrm{N}\mathfrak{f})^{s-1/2}\mathfrak{g}_{\psi}(\chi)$$
.

• We have $\ell < -\delta - f$. The character $\psi(\varpi^{\ell}u$ is non-trivial on each coset $u(1 + \mathfrak{p}^{f})$, and χ is constant on one of these, so the integral vanishes.

This concludes the proof of Lemma 4.2.

4.4. Theorem. We have

$$\widehat{\chi} = \gamma_{\psi}(\chi)\nu\chi^{-1}$$

for some scalar $\gamma_{\psi}(\chi)$. If $\chi(x) = |x|^s$ then

$$\gamma_{\psi}(\chi) = \mathrm{N}\mathfrak{d}^{s-1/2} \cdot \frac{1-q^{-(1-s)}}{1-q^{-s}}$$

If χ has conductor $\mathfrak{f} = \mathfrak{p}^f$ then

$$\gamma_{\psi}(\chi) = (\mathrm{N}\mathfrak{d}\mathrm{N}\mathfrak{f})^{s-1/2}\mathfrak{g}_{\psi}(\chi).$$

Proof. Assume $\operatorname{RE}(s) > 0$. Choose f in $\mathcal{S}(k^{\times})$. Then

$$\begin{split} \int_{k} \widehat{f}(x)\chi(x)|x|^{-1} \, dx \\ &= \int_{\mathfrak{p}^{n}} \widehat{f}(x)\chi(x)|x|^{-1} \, dx \\ &= \int_{\mathfrak{p}^{n}} \left(\int_{\mathfrak{p}^{r}} f(y)\psi(-xy) \, dy \right) \chi(x)|x|^{-1} \, dx \end{split}$$

for $n, r \ll 0$. All integrals are bounded, so there is no problem reversing the order of integration, and this is

$$\int_{\mathfrak{p}^r} f(y) \left(\int_{\mathfrak{p}^n} \psi(-xy) \chi(x) |x|^{-1} \, dx \right) \, dy \, .$$

Since f(0) = 0, we have an upper bound on m, and then Lemma 4.2 tells us that for $n \gg 0$ the inner integral is independent of n and equal to what it should be.

Remarks. The usual proof uses special test functions, whereas this one gets by with a somewhat arbitrary choice. This is perhaps only a curiousity. For global applications, one cannot escape special choices, because evaluating adelic integrals requires it.

5. References

1. J. W. S. Cassels and A. Fröhlich (editors), **Algebraic number theory**, Thompson Book Company, 1967.

2. John Tate, 'Fourier analysis in number fields and Hecke's zeta-functions', pp. 305–347 in [Cassels-Fröhlich:1967]. (This is the first publication of Tate's Princeton thesis, dated 1951.)

3. André Weil, 'Fonctions zêta et distributions', pages 158–163 in **Collected Papers III**, Springer, 1979. (See also Weil's comments about this on pp. 448–49.)