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1.
Introduction

5



In
S
in
g
u
larités

et
tran

sfert,
B

ob
posed

the
problem

of
decom

posing
at

the
sym

m
etric

pow
ers

of
irreducible

representations
of

G
=

G
L

2 (
C

)
of

finite
dim

ension.

S
uppose

σ
std

to
be

the
standard

representation
of

G
on

C
2,

and
let

σ
k

=
S

k(σ
std )

.

It
is

irreducible,
of

dim
ension

k
+

1.
Its

character
is

trace(γ
)

=
α

k
+

α
k
−

1β
+
···+

α
β

k
−

1
+

β
k

(

γ
=

[

α
β

]
)

.

W
hat

is
the

decom
position

of
S

m
(σ

k )
into

irreducible
representations?

T
here

is
a

potentialapplication
to

the
trace

form
ula,

as
w

e
s

hallsee
later.

In
any

case,
as

Langland
rem

arks,
“

...ce
n’est

pas
la

d
éterm

ination
pr

écise
des

coefficients
[in

the
decom

position]
dont

on
aura

besoin,
m

ais
leur

com
portem

ent
asym

ptotique.”
W

e
shallsee

that
there

is
som

e
hope

of
achieving

this,
and

even
of

answ
ering

the
analogous

questio
n

for
arbitary

reductive
groups.

6



T
he

first
interesting

case
is

the
decom

position
of

σ
2 .

T
he

answ
er

is
quite

sim
ple,

and
w

ellknow
n:

S
m

(σ
2 )

=
σ

2
m

+
σ

2
m

−
4
·d

et
2

+
···+

{

σ
0
·d

et
n

if
m

=
2n

σ
2
·d

et
n

if
m

=
2n

+
1

.
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P
roof.

S
ay

σ
=

σ
2

is
spanned

by
e
2 ,

e
0 ,

e
−

2 .
T

hen
the

w
eights

of
S

m
(σ

)
correspond

to
partitions

a
2
+

a
0
+

a
−

2
=

m
.

S
ort

these
by

the
value

of
a
0 .

T
hose

for
a

fixed
a
0

are
in

bijection
w

ith
partitions

of
m

−
a
0 .

W
eights

of
irreducible

com
ponents

can
be

picked
off

easily.

F
or

exam
ple,

S
3(σ

2 )
as

(partition:
w

eight
on

S
L

2 )
:

(3,0,0):
6

(2,1,0):
4

(1,2,0):
2

(0,3,0):
0

(2,0,1):
2

(1,1,1):
0

(0,2,1):
−

2
(1,0,2):

−
2

(0,1,2):
−

4
(0,0,3):

−
6

leading
to

S
3(σ

2 )
=

σ
6

+
σ

2
·d

et
2
.
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B
ut

B
ob

had
a

fair
am

ount
of

trouble
w

ith
σ

=
σ

3 .
H

e
rem

arks
that

at
any

rate
the

state
of

related
investigations

is
not

very
adva

nced,
and

that
“... il

n
’est

g
u
ère

u
tile

d
’essay

er
d
e
tro

u
v
er

u
n
e
ex
p
ressio

n
p
récise

p
u
r
les

co
effi

cien
ts

...”

N
onetheless,

although
σ

3
is

lesss
sim

ple
than

σ
2 ,

it
is

possible
to

figure
out,

w
ith

the
help

of
a

com
puter,

exactly
w

hat
happens

for
any

given
m

.
In

addition,
there

is
an

exact
form

ula
that’s

apparently
bee

n
know

n
for

along
tim

e.
It’s

a
bit

com
plicated,

but
its

asym
ptotic

behav
iour

is
very

sim
ple.

T
he

answ
er

is
suggestive

and
interesting

and,
one

m
i

ght
hope,

of
eventualvalue

in
applying

the
trace

form
ula.
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It
is

easy
enough

to
com

pute
the

decom
position

of
any

one
S

m
(σ

k )
ex-

plicitly,
at

least
if

m
and

k
are

sm
all.

In
general,

there
is

a
very

sim
ple

if
not

generally
practicalw

ay
to

com
pute

the
irreducible

deco
m

position
of

any
S

m
(π

).

•
F

ind
the

w
eight

m
ultiplicities

for
π

,
for

w
hich

there
are

a
num

ber
of

com
peting

algorithm
s.

•
Traverse

allthe
m

onom
ials

of
degree

m
in

the
eigenbasis,

accum
ulating

w
eight

m
ultiplicities

as
you

go.

T
his

is
unavoidably

slow
,

but
w

orks
w

ellenough
in

low
dim

ens
ions.

T
he

program
L
i
E

com
putes

these
w

eights
in

v
ery

low
dim

ensions,
but

fails
lam

entably
in

the
interesting

range.

K
now

ing
w

eight
m

ultiplicities,
one

can
com

pute
the

decom
po

sition
m

ul-
tiplicities

by
applying

an
alm

ost
trivialobservation

first
found

in
one

of
K

ostant’s
papers,

w
here

it
is

attributed
to

B
ott

(!):

•
T

he
decom

position
m

ultiplicities
can

be
found

by
m

ultiplyi
ng

the
w

eight
polynom

ialby
the

denom
inator

of
a

suitable
form

of
W

eyl’s
ch

aracter
for-

m
ula,

and
restricting

the
output

to
the

dom
inant

cham
ber.

T
his

very
sim

ple
observation

has
been

rediscovered
m

any
tim

es.
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F
or

G
L

2 ,
specialnotation

is
convenient.

If
σ

is
an

irreducible
representation

of
G

L
2 ,

I
define

its
trace

polynom
ial

to
be

τ
σ
(q)

=
trace

π
(γ

)

(

γ
=

[

1
0

0
q

]
)

,

w
hich

is
a

polynom
ialin

q.
T

hus
the

trace
polynom

ialof
σ

k
is

τ
k

=
1

+
q

+
···+

q
k

=
q

k
+

1
−

1

q
−

1
.

G
iven

the
centralcharacter

of
π

this
determ

ines
π

com
pletely,

since

[

a
0

0
b

]

=
a
·

[

1
0

0
b/a

]

.
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T
he

highest
w

eight
of

S
m

(σ
k )

is
k
m

,
and

allcom
ponents

w
illhave

the
sam

e
centralcharacter.

T
he

decom
position

w
illbe

of
the

for
m

∑

⌊
k
m

/
2
⌋

0
c
i
·σ

k
m

−
2
i
·d

et
i.

T
he

trace
polynom

ialw
illthen

be

τ
mk

=
∑

c
i
·q

i
·
1
−

q
k
m

−
2
i

1
−

q

so
that

(1
−

q)τ
mk

=
∑

c
i q

i
·(1

−
q

k
m

−
2
i)

.

T
h
e
d
eco

m
p
o
sitio

n
p
o
ly
n
o
m
ial

δ
mk

=
∑

c
i q

i
w
ill

b
e

(1
−

q)τ
mk

tru
n
cated

b
ey

o
n
d
d
eg

ree
⌊k

m
/2⌋.
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H
ere

are
the

first
few

decom
positions

for
σ

3 :

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
1
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
2
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
3
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
4
(
σ

3
)
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T
hings

look
som

ew
hat

better
for

larger
m

...

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
9
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
1
0
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
1
1
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
1
2
(
σ

3
)
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...m
uch

better
for

even
larger

m
...

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
2
5
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
2
6
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
2
7
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
2
8
(
σ

3
)
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...and
m

uch,
m

uch
better

for
very

large
m

.
(S

how
A
1
3
.
p
d
f.)
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T
he

data
clearly

exhibit
a

sim
ple

pattern
and

suggest
a

conje
cture.

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
2
3
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
2
4
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
2
5
(
σ

3
)

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0

S
2
6
(
σ

3
)
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T
he

highest
w

eight
of

σ
3

is
3.

T
he

highest
w

eight
of

S
m

(σ
3 )

is
3m

,
and

it
occurs

w
ith

m
ultiplicity

1.
T

he
m

ultiplicity
of

σ
k
m

in
S

m
is

therefore
also

1.
T

he
other

highest
w

eights
are

of
the

form
3m

−
2i,

for
i
≤

⌊3m
/2⌋.

Let
µ

m3
,i

be
the

m
ultiplicity

of
σ

3
m

−
2
i

in
S

m
(σ

3 ).
D

efine
also

the
arrays

α
=

[1,0,1,1,1,1]

β
=

[0,1,1]

γ
0

=
[1,0,1,0,1,0]

γ
1

=
[0,1,0,1,0,1]

C
onjecture:

If
j

=
⌊3m

/2⌋
−

i
th
en

µ
m3
,i

=



⌊i/6
⌋

+
α
[i

m
o
d

6]
if

i
≤

m
⌊j/3⌋

+
β
[j

m
o
d

3]
if

i
>

m
an

d
m

≡
1

(2)
⌊j/3⌋

+
γ
0 [j

m
o
d

6]
if

i
>

m
an

d
m

≡
0

(4)
⌊j/3⌋

+
γ
1 [j

m
o
d

6]
if

i
>

m
an

d
m

≡
2

(4)

18



W
e

can
at

least
begin

to
understand

this.

Let’s
look

at
the

m
ore

generalsituation—
w

e
w

ant
to

decom
pos

e
S

m
(σ

k ).
Its

highest
w

eight
is

α
k
m

,
and

it
w

illdecom
pose

as

S
m

(σ
k )

=

⌊
k
m

/
2
⌋

∑

0

c
i σ

k
m

−
2
i ·d

et
i.

(N
ote

the
reversed

order.)

R
ecallthat

δ
mk

=
∑

c
i q

i

the
decom

position
polynom

ial
.

19



If
I

w
rite

δ
m3

as
an

array
in

this
w

ay,
I

get

m
δ

m3

1
[1,0]

2
[1,0,1,0]

3
[1,0,1,1,0]

4
[1,0,1,1,1,0,1]

5
[1,0,1,1,1,1,1,0]

6
[1,0,1,1,1,1,2,0,1,0]

7
[1,0,1,1,1,1,2,1,1,1,0]

8
[1,0,1,1,1,1,2,1,2,1,1,0,1]

9
[1,0,1,1,1,1,2,1,2,2,1,1,1,0]

10
[1,0,1,1,1,1,2,1,2,2,2,1,2,0,1,0]

11
[1,0,1,1,1,1,2,1,2,2,2,2,2,1,1,1,0]

12
[1,0,1,1,1,1,2,1,2,2,2,2,3,1,2,1,1,0,1]

13
[1,0,1,1,1,1,2,1,2,2,2,2,3,2,2,2,1,1,1,0]

14
[1,0,1,1,1,1,2,1,2,2,2,2,3,2,3,2,2,1,2,0,1,0]

20



W
hat

appears
here

is
som

e
kind

of
asym

ptotic
series

w
hose

coe
fficients

are1,0,1,1,1,1,
2,1,2,2,2,2,

3,2,3,3,3,3,
4,3,4,4,4,4,

5,4,5,5,5,5,...

It
looks

like
a

kind
of

geom
etric

series,
w

hich
is

to
say

the
Ta

ylor
series

of
a

rationalfunction.
T

here
is

a
w

ellknow
n

technique
for

gu
essing

a
ra-

tionalfunction,
given

enough
of

its
Taylor

series,
and

w
hat

is
proposed

here
is

1

(1
−

q
2)(1

−
q
3)

.

S
o

w
e

can
m

ake
sense

out
of

at
least

som
e

of
w

hat
w

e
are

looking
a

t.
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2.
T

he
classicalform

ula
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T
here

is
a

classicalform
ula

for
the

trace
polynom

ialof
S

m
(σ

k ).
In

order
to

tellyou
w

hat
it

is,
I

m
ust

first
recall

q-analogues
of

fam
iliar

functions.

[n
]q

=
1

+
q

+
···+

q
n
−

1
=

q
n
−

1

q
−

1

[n
]
!q

=
[n

]q
...[1]q

[

nk

]

q =
[n

]
!q

[k
]
!q [n

−
k
]
!q

=
[n

]q
...[n

−
k

+
1]q

[k
]q

...[1]q

=
(q

n
−

1)
...(q

n
−

k
+

1
−

1)

(q
k
−

1)
...(q

−
1)

=
(1

−
q

n
)
...(1

−
q

n
−

k
+

1)

(1
−

q
k)

...(1
−

q)
.

If
w

e
set

q
=

1
these

evaluate
to

n
,
n
!,

and
(

nk

)

.
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[

nk

]

q

=
[n

]
!q

[k
]
!q [n

−
k
]
!q

.

T
hese

fit
into

a
q-analogue

of
P

ascal’s
triangle:

n0
:

1
1

:
1

1
2

:
1

1
+

q
1

3
:

1
1

+
q

+
q
2

1
+

q
+

q
2

1
4

:
1

1
+

q
+

q
2

+
q
3

1
+

q
+

2q
2

+
q
3

+
q
4

...
1

5
:

1
1

+
q

+
q
2

+
q
3

+
q
4

1
+

q
+

2q
2

+
2q

3
+

2q
4

+
q
5

+
q
6

...
...

1
...

24



T
here

are
analogues

of
classicalform

ulas:

[

nk

]

q

=

[

n

n
−

k

]

q
[

0k

]

q

=
{

1
if

k
=

0
0

otherw
ise.

[

nk

]

q

=

[

n
−

1

k

]

q

+
q

n
−

k

[

n
−

1

k
−

1

]

q

.

O
ne

consequence
is

that

[

nk

]

q

is
a

polynom
ialin

q.
T

his
not

quite
obvi-

ous,
just

as
it

is
not

im
ediately

obvious
that

(nk

)

is
an

integer.

25



B
ecause

of
w

ellknow
n

dim
ension

form
ulas,

it
should

not
surp

rise
you

to
learn

that

•
th
e
trace

p
o
ly
n
o
m
ial

λ
nk
o
f
∧

n
(σ

k
−

1 )
is

q
n
(n

−
1
)/

2
·

[

kn

]

q ;

•
th
e
trace

p
o
ly
n
o
m
ial

τ
nk
o
f
S

n
(σ

k )
is

[

n
+

k

k

]

q .

T
he

proof
of

the
first

is
by

induction,
applying

P
ascal’s

recu
rsion.

T
he

proof
of

the
second

exhibits
a

w
eight-com

patible
bijection

of
bases

of
∧

m
(σ

n
−

1 )
and

S
m

(σ
n
−

m
).
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I
recall:

if
S

m
(σ

k )
=

∑

c
i
·σ

k
m

−
2
i
·d

et
i.

the
decom

position
polynom

ial
is

δ(q)
=

δ
mk

(q)
=

⌊
k
m

/
2
⌋

∑i=
0

c
i q

i

T
he

trace
polynom

ialof
S

m
(σ

k )
is

then

⌊
k
m

/
2
⌋

∑

0

c
i ·q

i·
q

k
m

−
2
i+

1
−

1

q
−

1
=

∑

⌊
k
m

/
2
⌋

i=
0

c
i ·q

i
−

∑

⌊
k
m

/
2
⌋

i=
0

c
i ·q

k
m

−
i+

1

1
−

q

=
δ(q)

−
q

k
m

−
⌊
k
m

/
2
⌋
+

1δ
∨
(q)

1
−

q
.

H
ere

δ
∨

=
q
⌊
k
m

/
2
⌋δ(q

−
1)

is
the

P
oincar

é
dualof

δ.
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A
s

I
have

said
before:

P
roposition.

T
h
e
d
eco

m
p
o
sitio

n
p
o
ly
n
o
m
ial

o
f
S

m
(σ

k )
is

o
b
tain

ed
fro

m
th
e
trace

p
o
ly
n
o
m
ial

(1
−

q)τ
mk

(q)
b
y
tru

n
catin

g
all

term
s
o
f
d
eg

ree
larg

er
th
an

⌊k
m

/2⌋.
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3.
A

m
ore

explicit
form

ulation
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Let’s
see

how
the

classicalform
ula

agrees
w

ith
w

hat
w

e
know

a
nd

w
hat

w
e

conjecture.
W

hat
does

it
say

about
S

m
(σ

2 )?

(1
−

q
m

+
1)(1

−
q

m
+

2)

1
−

q
2

=

{

(1
+

q
2

+
···+

q
2
n
)(1

−
q

m
+

1)
if

m
=

2n
(1

+
q
2

+
···+

q
2
n
)(1

−
q

m
+

2)
if

m
=

2n
+

1
,

w
hich

m
atches

exactly
w

ith
w

hat
w

e
saw

before.

O
ne

thing
that

you
can

see
from

this
exam

ple
is

that
although

w
e

know
that

[

mk

]

q

is
a

polynom
ial,

evaluating
it

explicitly
as

a
polynom

ialin
q

w
illdepend

on
certain

congruence
conditions.

30



S
ince

δ
m3

is
a

truncation
of

(1
−

q)τ
m3

=
(1

−
q

m
+

1)(1
−

q
m

+
2)(1

−
q

m
+

3)

(1
−

q
2)(1

−
q
3)

.

w
e

can
already

understand
part

of
our

conjecture.
T
h
e
d
eco

m
p
o
sitio

n
p
o
ly
n
o
m
ial

ag
rees

w
ith

th
e
T
ay

lo
r
series

o
f
1/(1

−
q
2)(1

−
q
3)

u
p
th
ro
u
g
h

term
s
o
f
d
eg

ree
m
.

B
ut

w
e

can
actually

prove
the

conjecture
by

induction.
D

efine

µ
m3

=
∑

µ
m3
,i ·q

i
.

W
e

need
only

verify
initialconditions

and
the

recursion

µ
m3

=
µ

m
−

1
3

+
q

n
µ

m
−

1
2

,

w
hich

is
straightforw

ard
if

a
bit

tedious.
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4.
O

ther
exam

ples

F
irst

σ
4 .
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S
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σ
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)
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S
2
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σ
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5
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S
3
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σ

4
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1
0

2
0

3
0

4
0

5
0
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0

7
0

8
0

S
4
(
σ

4
)

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

S
5
(
σ

4
)

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

S
6
(
σ

4
)
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0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

S
7
(
σ

4
)

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

S
8
(
σ

4
)

0
1
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5
0

6
0

7
0

8
0

S
9
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σ

4
)
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S
1
0
(
σ

4
)
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2
0

3
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5
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6
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7
0

8
0

S
1
1
(
σ

4
)

0
1
0

2
0

3
0

4
0

5
0

6
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7
0

8
0

S
1
2
(
σ

4
)
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2
0

3
0

4
0
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7
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8
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S
1
3
(
σ

4
)
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2
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S
1
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σ
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S
1
5
(
σ

4
)
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3
0
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0
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0
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8
0

S
1
6
(
σ

4
)
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0

S
1
7
(
σ

4
)
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1
0
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0
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0

4
0

5
0

6
0

7
0

8
0

S
1
8
(
σ

4
)
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A
1
4
.
p
d
f

A
1
6
.
p
d
f

36



T
here

is
one

observation
that

should
m

ake
things

clearer.
M

u
ltiplying

by
1
−

q
replaces

the
polynom

ial
∑

c
i q

i
by

∑

(c
i
−

c
i−

1 )q
i.

Taking
our

scal-
ing

into
account,

it
becom

es
a

derivative.
T

his
suggests

tha
t

it
m

ight
be

a
fruitfulidea

to
graph

the
w

eight
polynom

ial
τ

mk
rather

than
the

decom
po-

sition
polynom

ial
δ

mk
.

a
1
w
t
s
3
.
p
d
f

a
1
w
t
s
3
a
.
p
d
f
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I.e.
w

eights
versus

decom
position:

38



a
1
w
t
s
1
6
.
p
d
f
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It
looks

very
m

uch
as

though
the

trace
polynom

ials
becom

e
clo

ser
and

closer
to

the
distribution

of
a

norm
alcurve

as
k
→

∞
,

and
the

decom
po-

sition
polynom

ialw
ould

then
have

as
lim

it
the

negative
of

it
s

derivative.
S

o
w

e
are

presum
ably

dealing
w

ith
som

e
new

version
of

the
cent

rallim
it

theorem
!

T
his

is
rem

arkable.
T

here
is

a
know

n
lim

it
form

ula
(due

to
G

er
rit

H
eck-

m
an)

for
the

w
eights

of
the

irreducible
representation

π
n

λ
(any

reduc-
tive

group)
as

n
→

∞
,

but
although

quite
elegant,

it
is

also
m

uch
m

ore
com

plicated.
It

ap
p
ears

that
the

sym
m

etric
pow

ers
are

sim
pler.

B
ut

I
have

very
little

evidence
for

this
for

groups
of

higher
rank.

O
ne

obstacle
is

that
I

do
not

have
a

very
fast

w
ay

to
com

pute
the

w
eights

of
sym

m
etric

pow
ers,

w
hich

grow
in

size
very

rapidly.
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W
e

know
that

τ
mk

=
(1

−
q

m
+

1)
...(1

−
q

m
+

k)

(1
−

q)
...(1

−
q

k)
.

U
p

through
term

s
of

degree
m

this
agrees

w
ith

the
Taylor

series
of

1

(1
−

q)
...(1

−
q

k)
.

W
hat

is
that

series?

It
is

∑

∞0
N

n
q

n

w
ith

N
n

=
|{(m

i )
k1
|
∑

m
i
·i

=
n
}|.

T
his

is
the

sam
e

as
the

num
ber

of
integralpoints

(m
i )

i≥
2

such
that

∑

m
i ·

i
≤

n
,

w
hich

is
asym

ptotically
of

the
form

C
n

k
−

1.
A

n
exact

form
ula

w
ill

depend
on

n
m

odulo
k
!.

I
believe

I
can

show
that

asym
ptotically

τ
mk

is
equalto

a
polynom

ialof
degree

k
−

1
on

each
of

severalintervals
that

can
be

specified
sim

ply.
I

seem
to

have
an

algorithm
for

finding
these

polynom
ials

for
an

y
given

m
.
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T
here

is
a

w
ay

to
see

intuitively
w

hat’s
going

on.
A

s
m

grow
s

large
by

k
rem

ains
fixed,

the
w

eight
polynom

iallooks
m

ore
and

m
ore

like

(1
−

q
m

+
1)

k

(1
−

q
k)

=
(1

+
···+

q
m

)
k
,

w
hich

does
indeed,

upon
scaling,

record
the

distribution
of

k
uniform

ly
distributed

random
variables.

S
o

at
the

m
om

ent
I

conjecture
that

the
lim

it
d
istrib

u
tio

n
o
f
th
e
w
eig

h
t
p
o
ly
n
o
m
ial

is
su

ch
a
d
istrib

u
tio

n
.
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5.
B

asic
functions

43



H
ow

and
w

hy
did

B
ob

arrive
at

the
problem

of
sym

m
etric

pow
er

de
com

-
position?

T
here

is
a

form
ula

attributed
in

the
literature

to
M

olien
that

tells
us

that
if

T
is

any
linear

transform
ation

on
a

finite
dim

ensionalvector
space

1

d
et(I

−
T

x
)

=
∑

m
≥

0

x
m

trace
S

m
(T

)

T
his

can
be

applied
to

the
case

w
here

T
=

σ
(F

π
),

w
ith

F
π

equalto
w

hat
B

ob
calls

the
F

robenius-H
ecke

elem
ent

of
an

L
-group

L
G

.

If
x

=
q
−

s,
the

left-hand
side

becom
es

L
(s,π

,σ
).

E
ach

term
in

the
infinite

sum
defines

a
conjugation-invariant

affine
function

on
the

L
-group,

and
is

therefore
(according

to
one

of
B

ob’s
originalobservations

)
in

the
im

age
of

the
S

atake
transform

.
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In
som

e
circum

stances,
the

L
-group

has
a

center
isom

orphic
to

C
×

,
the

unram
ified

group
G

possesses
an

analogue
of

the
determ

inant
m

ap,
and

σ
(π

)
·q

−
s

=
σ
(π

)
·|d

et
| s

.

In
these

circum
stances,

let
f

σ
be

the
sum

of
inverse

S
atake

transform
s.

E
ach

term
w

illhave
support

on
|d

et
|
=

q
−

m
s,

and
the

sum
w

illbe
locally

finite.
It

has
been

suggested
that

it
w

illm
ake

som
e

kind
of

sen
se

to
use

f
σ

in
the

trace
form

ula,
even

though
it

does
not

have
com

pact
sup

port.
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W
hat

is
the

asym
ptotic

behaviour
of

f
σ

as
|d

et
|
→

0?

In
general,

finding
an

answ
er

to
this

question
depends

on
tw

o
t

hings—
the

inverse
S

atake
transform

and
the

decom
position

of
sym

m
e

tric
pow

ers.
F

or
G

L
2 ,

the
S

atake
transform

is
sim

ple
enough

that
the

answ
er

depen
ds

only
on

the
sym

m
etric

pow
er

decom
position.
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P
roposition.

S
u
p
p
o
se

λ
a
d
o
m
in
an

t
w
eig

h
t
fo
r

G
L

2 ,
an

d
th
at

S
m

(σ
λ
)
=

∑

c
i σ

m
λ
−

iα
.

T
h
en

th
e
b
asic

fu
n
ctio

n
ev

alu
ated

at
m

λ
−

iα
is

Φ
m

λ
−

iα
=

∑

0
≤

ℓ≤
i c

ℓ q
ℓ
.

P
roof.

S
uppose

that
S

m
(σ

λ
)

=
∑

c
i σ

m
λ
−

iα
.

A
s

is
w

ellknow
n,

S
−

1τ
m

λ
−

iα
=

∑

q
−

jf
m

λ
−

iα
−

j
α

w
hich

leads
to

S
m

(σ
λ
)
=

∑i,j

c
i f

m
λ
−

iα
−

j
α

=
∑

ℓ

f
m

λ
−

ℓα

∑

i

q
−

(ℓ−
i)c

i .

in
w

hich
the

first
sum

is
over

all
ℓ

for
w

hich
m

λ
−

ℓα
≥

0,
the

second
over

0
≤

i
≤

ℓ.
D

ualize.
Q

E
D
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F
or

groups
other

than
G

L
2 ,

such
as

G
L

3
and

S
p

4 ,
I

have
som

e
intriguing

evidence
that

an
eventualansw

er
is

not
out

of
reach.

F
or

G
S
p

4
I

have
an

extrem
ely

sim
ple

conjecture,
based

on
extensive

com
putati

on,
for

the
ba-

sic
function

associated
to

the
standard

representation.
A

s
a

result
of

joint
w

ork
w

ith
Tom

H
ales

on
a

com
pletely

different
m

atter,
I

have
a

m
ethod

to
w

ork
w

ith
arbitrary

unram
ified

groups.
F

or
the

p-adic
group

S
U

3
this

re-
duces

to
com

putations
for

G
L

2 ,
and

in
generalthe

Langlands
L

-function
is

alw
ays

related
to

an
L

-function
for

a
split

group.
T

his
is

because
of

the
curious

form
of

the
‘tw

isted
W

eylcharacter
form

ula’.

T
here

is
som

e
reason

to
think

that
for

groups
of

higher
rank

it
is

the
ba-

sic
function

for
w

hich
one

expects
a

relatively
sim

ple
form

u
la.

T
he

geom
-

etry
of

the
V

inberg
m

onoids
suggests

this.

B
ut,

as
B

ob
has

said,
at

this
point

the
technology

of
sym

m
etri

c
pow

er
decom

position,
although

in
a

poor
state,

is
in

advance
of

pos
sible

appli-
cations

to
the

trace
form

ula.
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I
w

ish
to

thank
A

liA
ltug

for
encouragem

ent.
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