Decomposition of symmetric powers

by Bill Casselman



b This will be a very elementary talk.



» It is a report on work in progress.
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1. Introduction



In Singularités et transfert, Bob posed the problem of decomposing at the
symmetric powers of irreducible representations of G = GL3(C) of finite
dimension.

Suppose ostq to be the standard representation of G on C?, and let
_ ck
O — m Aqmav .

It is irreducible, of dimension k + 1. Its character is

trace(y) = o + "G4 faft T4 85 (= |7 g

What is the decomposition of S (o) into irreducible representations?

There is a potential application to the trace formula, as we s hall see later.

In any case, as Langland remarks, “ ...ce n'est pas la d étermination pr écise
des coefficients [in the decomposition] dont on aura besoin, mais leur
comportement asymptotique.” We shall see that there is some hope of
achieving this, and even of answering the analogous questio n for arbitary

reductive groups.



The first interesting case is the decomposition of o2. The answer is quite
simple, and well known:

oo-det” if m = 2n

m - . 2 o o e
5" (02) = 0am + ooy -det” + +ﬁqw.%d: if m=2n+1



Proof. Say 0 = o5 is spanned by es, eg, e_2. Then the weights of S"* (o)
correspond to partitions as + ag + a_o = m. Sort these by the value of ay.
Those for a fixed ag are in bijection with partitions of  m — ag. Weights of
irreducible components can be picked off easily.

For example, S2(o9) as (partition: weight on  SLs) :

(3,0,0): 6 (2,1,0): 4 (1,2,0): 2  (0,3,0): 0O
(2,0,1): 2 (1,1,1): 0 (0,2,1): —2

(1,0,2): —2  (0,1,2): —4

(0,0,3): —6

leading to
MwAQwv — 0g + 09 .det?.



But Bob had a fair amount of trouble with o = o3. He remarks that at
any rate the state of related investigations is not very adva nced, and that
“...1l n’est guere utile d’essayer de trouver une expression précise pur les
coefficients . ..”

Nonetheless, although o3 is lesss simple than o9, it is possible to figure

out, with the help of a computer, exactly what happens for any given m.
In addition, there is an exact formula that's apparently bee n known for
along time. It's a bit complicated, but its asymptotic behav lour is very
simple. The answer is suggestive and interesting and, one mi ght hope,

of eventual value in applying the trace formula.



It is easy enough to compute the decomposition of any one S™ (o)) ex-
plicitly, at least if m and k£ are small. In general, there is a very simple if
not generally practical way to compute the irreducible deco mposition of
any S™(m).

e Find the weight multiplicities for 7, for which there are a number of
competing algorithms.

e Traverse all the monomials of degree  m in the eigenbasis, accumulating
weight multiplicities as you go.

This is unavoidably slow, but works well enough in low dimens jons. The
program LiE computes these weights in  very low dimensions, but fails
lamentably in the interesting range.

Knowing weight multiplicities, one can compute the decompo sition mul-
tiplicities by applying an almost trivial observation first found in one of
Kostant’'s papers, where it is attributed to Bott (!):

e The decomposition multiplicities can be found by multiplyi ng the weight
polynomial by the denominator of a suitable form of Weyl's ch aracter for-
mula, and restricting the output to the dominant chamber.

This very simple observation has been rediscovered many tim es.
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For GL5, special notation is convenient.

If o is an irreducible representation of  GLs, | define its trace polynomial
to be

Tolq) = trace w(y) {v= |, |

which is a polynomial in  g. Thus the trace polynomial of o Is

w+H|H

q—1
Given the central character of 7 this determines m completely, since

a 0 1 0
= a-

0 b 0 b/a
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The highest weight of S™ (o) is km, and all components will have the

same central character. The decomposition will be of the for

[km /2]

m 0 C; " Okm—2i ° Q@ﬁs .

The trace polynomial will then be

-
ﬂm@HMus.@s. !

1 —gq

km—21

so that |
(1-q)m" MUQ@ (1—¢"m%).

The decomposition polynomial §7* = > ¢;q" will be (1 — q)
beyond degree |km/2].

12
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Here are the first few decompositions for
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Things look somewhat better for larger
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... much better for even larger m ...
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...and much, much better for very large

m. (Show A1_3.pdf.)



The data clearly exhibit a simple pattern and suggest a conje cture.

mww AQ.wv
T LT T T T Y e
0 10 20 30 40 50 60 70 80
_m.m% AQ.wv
I T T I 1T e
0 10 20 30 40 50 60 70 80
mwm AQ.wv
T T T T T .
0 10 20 30 40 50 60 70 80
mwm AQ.wv
-.--..._._________________._.-........-.
0 10 20 30 40 50 60 70 80

17



The highest weight of o3 is 3. The highest weight of S (o3) is 3m, and it
occurs with multiplicity 1. The multiplicity of  o,, in S™ is therefore also
1. The other highest weights are of the form  3m — 24, for ¢ < [3m/2]. Let
p3'; be the multiplicity of ~ 03,,—2; in S (03). Define also the arrays

a =[1,0,1,1,1,1]
B =10,1,1]

v =[1,0,1,0,1,0]
v1 =10,1,0,1,0, 1]

Conjecture: If j = |3m/2] — i then

(11/6] + alimod6] ifi<m

m ) 1J4/3] + Bljmod3] ifi>mandm =1 (2)

Ha,i = 9 17/3] +0[jmod 6] ifi>m and m =0 (4)
( [7/3] +71[jmod6] ifi>m and m =2 (4)
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We can at least begin to understand this.

Let’s look at the more general situation—we want to decompos
Its highest weight is a*™, and it will decompose as

[km/2] |
MSAQ\&V — MU CiOkm —21 .Q@ﬁs .
0

(Note the reversed order.)

Recall that

the decomposition polynomial

19
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What appears here is some kind of asymptotic series whose coe fficients
are

1,0,1,1,1,1, 2,1,2,2.2.2, 3.2,3,3,3,3, 4,3,4,4,4,4, 5,4,5.5,5,5, . ..

It looks like a kind of geometric series, which is to say the Ta ylor series

of a rational function. There is a well known technique for gu essing a ra-
tional function, given enough of its Taylor series, and what IS proposed
here is

1

(1-¢*)(1—-¢%)

So we can make sense out of at least some of what we are looking a t.

21



22

2. The classical formula



There is a classical formula for the trace polynomial of S™ (o). In order

to tell you what it is, | must first recall g-analogues of familiar functions.

. B q" — 1

—1 . n—-1 _ 1 =
iy +tq+-+q g—1
), = [0l [1],
-ﬁé B T@F
R P LR (e

_ n)g...[n—k+1],

[Flg - [1q

23

(" —1)...(¢" "1 —1)
(¢"—=1)...(¢—1)
(1—q")...(1—qg" "

(1-¢~)...(0—¢q)

n
If we set ¢ = 1 these evaluate to n, n!, and va



These fit into a g-analogue of Pascal’s triangle:

n

0: 1

1: 1 1

2: 1 1+ ¢ 1

3: 1 1+q+q? 1+q+¢°

4: 1 14+q+q¢+¢° 1+q+2¢%+ ¢+ ¢*

5: 1 1+q+¢+¢+q¢" 1+q+2¢*+2¢° +2¢" + ¢ +¢°

24



There are analogues of classical formulas:

n| n
Lip n—kj,
0 _ ﬁ 1 ifk=0
k], 0 otherwise.
n n—1 Lk n—1
= q
|k ’ k : k—1 .
n
One consequence is that I Is a polynomial in ¢g. This not quite obvi-
q
ous, just as it is not imediately obvious that ANV is an integer.

25



Because of well known dimension formulas, it should not surp rise you to
learn that

k

o the trace polynomial A\? of \" (oy_1) is ¢""~1/2. ol

q

n+k
e the trace polynomial 7]} of S™(o},) is I
q

The proof of the first is by induction, applying Pascal’s recu rsion. The
proof of the second exhibits a weight-compatible bijection of bases of

N"(on_-1) and S™(op_m).

26



| recall: if |
QSAQNV — MUQS. " Okm—2i ° Q@ﬁs .

the decomposition polynomial is

[km /2]
5q) =6 (a)= > cd
1=0
The trace polynomial of S™ (o} ) is then
[km /2] [km /2]

Lkm /2] o gkm—2i+1 _q MU.HD ci g’ - MU.HQ

Here 6V = ¢l¥m/2]15(¢~1) is the Poincar & dual of 6.

27
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As | have said before:

Proposition. The decomposition polynomial of S™ (o}, ) is obtained from

the trace polynomial (1 — q)7;"*(¢q) by truncating all terms of degree larger
than [km/2].



29

3. A more explicit formulation



Let’s see how the classical formula agrees with what we know a nd what
we conjecture. What does it say about S (02)?

(1—¢" (1 —¢m"?) 14+ ¢+ +¢")1—qg™) if m=2n

1 — g2 14+¢+-+¢)(1—-q¢m™2) Fm=2n+1,

which matches exactly with what we saw before.

One thing that you can see from this example is that although w e know
that

m

k q
IS a polynomial, evaluating it explicitly as a polynomial in q will depend on

certain congruence conditions.
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Since 05" is a truncation of

e (2 gmTH(A - g1 — g™
S 01—

we can already understand part of our conjecture. The decomposition
polynomial agrees with the Taylor series of 1/(1 — ¢*)(1 — ¢°) up through
terms of degree m.

But we can actually prove the conjecture by induction. Define
p3 = MU 13 q -

We need only verify initial conditions and the recursion

n, m—1

py =y gy

which is straightforward if a bit tedious.
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First o0y4.

4. Other examples
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There is one observation that should make things clearer. Mu ltiplying by

1 — q replaces the polynomial

S eiqt by Y (c; — c;—1)q". Taking our scal-

iIng into account, it becomes a derivative. This suggests tha t it might be a
fruitful idea to graph the weight polynomial 7, rather than the decompo-

sition polynomial  9;".
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l.e. weights versus decomposition:



al_ wts_16.pdf
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It looks very much as though the trace polynomials become clo ser and
closer to the distribution of a normal curve as k — oo, and the decompo-
sition polynomial would then have as limit the negative of it s derivative.
So we are presumably dealing with some new version of the cent ral limit
theorem!

This is remarkable. There is a known limit formula (due to Ger rit Heck-
man) for the weights of the irreducible representation 7™ (any reduc-
tive group) as n — o0, but although quite elegant, it is also much more
complicated. It appears that the symmetric powers are simpler. But | have
very little evidence for this for groups of higher rank.

One obstacle is that | do not have a very fast way to compute the weights
of symmetric powers, which grow in size very rapidly.

40



We know that
AH L an_le o AH L an_l\av

(1=q)...(1—4¢")
Up through terms of degree m this agrees with the Taylor series of

T =

1
(I—q)...(L—¢%)

What is that series?

It is

> Ng"

Ny = {(m)t | Y mi-i=n}|.

This is the same as the number of integral points ~ (m;);>2 such that »_ m;-
1 < n, which is asymptotically of the form CnF~1. An exact formula will
depend on n modulo k!.

with

| believe | can show that asymptotically 77" is equal to a polynomial of
degree k — 1 on each of several intervals that can be specified simply. |
seem to have an algorithm for finding these polynomials for an y given m.

41



There is a way to see intuitively what's going on. As m grows large by k
remains fixed, the weight polynomial looks more and more like

AH L QS.THVN@ "
— AH T+t QSV )
(1—q")
which does indeed, upon scaling, record the distribution of k uniformly
distributed random variables. So at the moment | conjecture that the Ilimit

distribution of the weight polynomial is such a distribution.
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5. Basic functions



How and why did Bob arrive at the problem of symmetric power de com-
position? There is a formula attributed in the literature to Molien that tells
us that if 1" is any linear transformation on a finite dimensional vector

space
1

det(I — Tx) -

MU "™ trace S™(T)

m>0

This can be applied to the case where T = o(§,), with §, equal to what
Bob calls the Frobenius-Hecke element of an L-group “G.

If © = ¢, the left-hand side becomes L(s, 7w, 0). Each term in the infinite
sum defines a conjugation-invariant affine function on the L-group, and is
therefore (according to one of Bob’s original observations ) in the image of
the Satake transform.

44



In some circumstances, the L-group has a center isomorphic to  C*, the
unramified group G possesses an analogue of the determinant map, and

o(m)-q°=o(m)-|det]|®.

In these circumstances, let  f, be the sum of inverse Satake transforms.
Each term will have support on | det| = ¢~™*, and the sum will be locally
finite. It has been suggested that it will make some kind of sen se to use
fo in the trace formula, even though it does not have compact sup port.
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What is the asymptotic behaviour of  f, as |det| — 07

In general, finding an answer to this question depends on two t hings—
the inverse Satake transform and the decomposition of symme tric powers.
For GL5, the Satake transform is simple enough that the answer depen ds

only on the symmetric power decomposition.
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Proposition.  Suppose A a dominant weight for GL2, and that

mgAqu — MU Ci OmA—ia -

Then the basic function evaluated at m\ — i« is

Proof. Suppose that

As is well known,

which leads to
msAqu — MU Q&\,gyls.o«lm.om — MU .x,gylmom MU @IQI&O@. .
i,j I i
in which the first sum is over all ¢ for which mA — fa > 0, the second over

0 <1 </. Dualize. QED
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For groups other than GLsy, such as GLj3 and Sp,, | have some intriguing
evidence that an eventual answer is not out of reach. For GSp, | have an

extremely simple conjecture, based on extensive computati on, for the ba-
sic function associated to the standard representation. As a result of joint
work with Tom Hales on a completely different matter, | have a method to

work with arbitrary unramified groups. For the p-adic group SUg this re-
duces to computations for  GL5, and in general the Langlands L-function
is always related to an  L-function for a split group. This is because of the
curious form of the ‘twisted Weyl character formula’.

There is some reason to think that for groups of higher rank it IS the ba-
sic function for which one expects a relatively simple formu la. The geom-
etry of the Vinberg monoids suggests this.

But, as Bob has said, at this point the technology of symmetri C power
decomposition, although in a poor state, is in advance of pos sible appli-
cations to the trace formula.
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