

ω

'sdnoı6 ə^!!〇npə』

$\cdot\left(\text { P7s }^{2}\right)_{y} S=Y^{2}$

\longmapsto

Nonetheless, although σ_{3} is less simple than σ_{2}, it is possible to figure
out, with the help of a computer, exactly what happens for any given m.
In addition, there is an exact formula that's apparently been known for
along time. It's a bit complicated, but its asymptotic behaviour is very
simple. The answer is suggestive and interesting and, one might hope,
of eventual value in applying the trace formula.
coefficients ..."
But Bob had a fair amount of trouble with $\sigma=\sigma_{3}$. He remarks that at
any rate the state of related investigations is not very advanced, and that
".

'06 noK se sə!!!!!ןd!ןnu łપర!əm

not generaily

1е47 0 s
әq иәцł II!м ןе!шouКןod әכе» әчц

カレ

ふ ふ ふ
｜II｜｜｜｜｜｜
$N \bigcirc \longmapsto$
$\overparen{A} \overparen{A}$
Conjecture：If $j=\lfloor 3 m / 2\rfloor-i$ then

The highest weight of σ_{3} is 3 ．The highest weight of $S^{m}\left(\sigma_{3}\right)$ is $3 m$ ，and it
occurs with multiplicity 1 ．The multiplicity of $\sigma_{k m}$ in S^{m} is therefore also
1．The other highest weights are of the form $3 m-2 i$ ，for $i \leq\lfloor 3 m / 2\rfloor$ ．Let
$\mu_{3, i}^{m}$ be the multiplicity of $\sigma_{3 m-2 i}$ in $S^{m}\left(\sigma_{3}\right)$ ．Define also the arrays
'ן!!mouK|od uo!!!!sodmoэəp әчł

are

1

! ! : ||еכə』

N

en

a1_wts_3.pdf
a1_wts_3a.pdf
sition polynomial δ_{k}^{m}.

ing into account,

0

$$
\omega_{\infty}
$$

fod $9 I^{-s q M^{-}}$IE

theorem!

sition polynomial would then have as limit the negative of its derivative. closer to the distribution of
${ }^{\circ}$
syool \mid

¿sә!̣әл ұечł s! ¡ечМ
¡ечұ моия әМ

1
 This can be applied to the case where $T=\sigma\left(\mathfrak{F}_{\pi}\right)$, with \mathfrak{F}_{π} equal to what
Bob calls the Frobenius-Hecke element of an L-group ${ }^{L} G$.
If $x=q^{-s}$, the left-hand side becomes $L(s, \pi, \sigma)$. Each term in the infinite
sum defines a conjugation-invariant affine function on the L-group, and is
therefore (according to one of Bob's original observations) in the image of

u! yठnoył|e 'uo!t!Soduoગəp etry of the Vinberg monoids suggests this.
But, as Bob has said, at this point the tech
There is some reason to think that for groups of higher rank it is the ba-
sic function for which one expects a relatively simple formula. The geom curious form of the 'twisted Weyl character formula'.

 work with arbitrary unramified groups. For the p-adic group SU_{3} this rework with Tom Hales on a completely different matter, I have a method to
 extremely simple
 on extensiv

чэеәд ң0 ¥no ł0u

$\begin{array}{ll}10 \\ 10 \\ 0 \\ 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

Québec 37 (2013), 173-253.

(1982), 333-356.

- Gerrit Heckman, ‘Projection of orbits and asymptotic behaviour of multi-
plicities for compact connected Lie groups', Inventiones Mathematicae 67
variants, Springer, 2009.
- Roe Goodman and Nolan Wallach, Symmetry, representations, and in-

