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We shall be concerned with geometrical figures with a high degree of symmetry, in both 2D and 3D. In 3D
the most symmetrical figures are the five Platonic solids, which we shall see how to construct in the last section.
There are many ways to do this, and many described in the literature, but the most satisfactory method is one
which extends to a wide variety of regular figures of all kinds. This depends on understanding its symmetry
transformations, which make up what is called a Coxeter group, generated by reflections of a particular kind.

1. Mathematical symmetry

In common English usage, the term symmetry seems to have meant at first the property of being balanced or
well-proportioned. This original meaning continues in a slightly more technical sense in the phrases bilateral
symmetry and mirror symmetry applied to a figure which looks the same as its image in a mirror. For example,
the triangle on the left has mirror symmetry while the one on the right does not.

In effect, the reason we say the figure on the left has mirror symmetry is that we can slice it with a line to divide
it into two halves which are congruent to one another, but with orientation reversed, as if reflected in a mirror.
The line is called an axis of symmetry of the triangle.
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In mathematics, we distinguish between degrees of symmetry. For example, the equilateral triangle shown below
has more symmetry than the triangles above.

To be precise, it has three axes of symmetry.

Exercise. Is it true that every triangle with three axes of symmetry is equilateral? Explain.

The kinds of symmetry a finite plane figure can have is very limited. Exactly what kinds of symmetry can a figure
have? First of all, there are several elementary kinds of symmetry. We have already seen mirror or reflection
symmetry. But the figure in this picture also has a kind of symmetry, which we shall call rotational:

That is to say, we can rotate this figure by 120� and we just get the same figure again. As the equilateral triangle
demonstrates, a finite figure can have both reflection and rotation symmetry.

A figure can also have translation symmetry.

This requires that the figure be infinite in extent.
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It is in fact possible to classify all the possible kinds of symmetry a plane figure can have, according to the set of all
of its symmetries. Here by a symmetry of a figure we mean any rigid transformation which takes the figure into
itself. I remind you that every rigid 2D transformation of a figure is one which doesn’t distort it in any way—i.e.
which preserves relative lengths and angles. Any rigid transformation can be obtained as the composition of a
rotation or reflection with a translation.

From now on we shall restrict ourselves to figures which are of bounded size. This makes our discussion much
simpler (and perhaps less interesting). In order to avoid technicalities we shall assume that the figure is the union
of the interior of some finite region of the plane and its boundary.

There are two basic and self-evident principles we work with:

� Composition principle. The composition of two symmetries of a figure, one applied after the other, is also a
symmetry of the figure.

� Inversion principle. The inverse of any symmetry of a figure is also a symmetry of the figure.

Any set of transformations of an object satisfying these conditions is called a group. We are examining the possible
symmetry groups of geometrical figures.

These principles allow us to narrow down the possibilities quite a bit. Suppose that we are given a bounded
figure with more than one symmetry. It is not too difficult to see that if it has an infinite number of symmetries
then it has to be a circle. Suppose, then, that it has only a finite number of symmetries s1, s2, : : : , sn (including
the trivial one which doesn’t transform anything). If P is any point of the figure, consider the vector average

P =
s1(P ) + s2(P ) + � � � + sN (P )

n
:

which is also the centre of gravity of the n points. If we apply si to it, we get

siP =
sis1(P ) + sis2(P ) + � � � + sisN (P )

n
:

By the composition principle, each of the products is also a symmetry of the figure. These products are all
different, for if sisj = sisk then we can apply s�1

i
to both sides and see that sj = sk. But if the products are all

different then since there are n of them they must range over the whole set of symmetries. The sum for siP is
therefore over the same set as that defining P . In other words

siP = P :

This tells us that if a figure possesses only a finite number of symmetries then there is one point somewhere in the
plane fixed by all of its symmetries. I will not go into details here, but it is not difficult to deduce from this result
that bounded figures, as far as their symmetry is concerned, fall into three classes: (1) total circular symmetry; (2)
a finite degree of rotation symmetry; (3) a finite degree of mixed rotation and reflection symmetry. In the second
category are those figures with no noticeable symmetry—for the only symmetry is the rotation by 0�— and in the
last category are those figures whose only non-trivial symmetry is a single reflection.

Here are pictures of examples from each of the three types:
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The only figure with circular symmetry is : : : well : : : a circle. The rest of the figures will be polygons of various
shapes. In the case of rotation symmetry, the figure will have n-fold rotation symmetry for some integer n, in
which case it can be rotated into itself through 360�=n. If it has mixed symmetry, then it will be invariant under
n rotations and n reflections for some integer n, a total of 2n. The rotations are all generated by a single rotation
through 360�=n, and the reflections will be throughn lines evenly spaced at 360�=n apart. As already mentioned,
a figure can have no symmetry whatsoever, as a special case of rotation symmetry with n = 1.

Suppose a figure has N symmetry transformations in all (and is not a circle). It can always be partitioned into
N distinct regions, each of which is congruent to the others. If we move the figure so that one of its axes of
symmetry—if it possesses any—is the x-axis, then these regions are just the intersections of the figure with one
of the sections 0 � � < 360�=N . I shall call them the symmetry chambers of the figure.

There are exactly as many chambers in this partition as there are symmetries of the figure. Suppose we fix one of
the pieces in the partition. Call it, say, C . If s is a symmetry transformation of the figure then s will transform
C to one of the other pieces of the partition. In this way we specify an exact association between pieces of the
partition and symmetries of the figure—that is to say, as s ranges over all symmetries of the figure s(C) ranges
over all the pieces of the partition.

This is one way of using geometry to classify the symmetries. Another is to describe the symmetries more directly
in geometrical terms: to a figure of mixed symmetry with 2n symmetries n of them are rotations by multiples of
360�=n and the other n are reflections in various axes of symmetry of the figure. These two ways of describing
the symmetries are rather different in flavour. They are perhaps complementary. Both descriptions are valuable.

2. Reflections

The key to our construction of the Platonic solids is understanding certain reflection symmetries of these figures.
In this section we shall look in detail at reflections.

A reflection is the mathematical way to transform something into its mirror image. In 2D a reflection is associated
to a line, and in 3D it is associated to a plane. In both cases, we shall be concerned here only with reflections in
lines or planes that pass through the origin. Such reflections are linear transformations.

In either 2D or 3D the object through which things are reflected is described by a single equation f = 0 where in
2D the linear function f has the form f(x; y) = Ax+By and in 3D it has the form f(x; y; z) = Ax+ By +Cz.
In either case the function f specifies a vector � which is perpendicular to the reflection line or surface, since the
equation can be read � � v = 0 where in 2D the vector � is (A;B) and in 3D it is (A;B;C).

Given �, how can we specify the reflection precisely?
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u

u� 2u0

u0

Suppose we are given u and the vector � perpendicular to the line we are reflecting in. Let

u0 =
�u ��
� ��

�
�

be the projection of u along �. The figure shows that the reflection of u in the line perpendicular to � is

u� 2u0 :

This formula works in any number of dimensions:

� The reflection of u in � � v = 0 is
r�u = u� 2

�u ��
� ��

�
� :

It is often convenient to arrange that k�k = 1. Suppose now that the line we reflecting in has angle � with respect
to the x-axis. The vector (cos�; sin �) lies along this line, and to obtain � we rotate this by 90�. We get

� = [� sin � cos � ] :

The matrix corresponding to the reflection is the one whose columns are the images of (1; 0) and (0; 1) with
respect to the reflection. We get these columns to be

�
1

0

�
� 2(� sin �)

�
� sin �

cos �

�
=

�
1� 2 sin2 �

2 sin � cos �

�
;

�
0

1

�
� 2(cos �)

�
� sin �

cos �

�
=

�
2 sin � cos �

1� 2 cos2 �

�
:

By using the trigonometrical formulas
cos 2� = cos2 � � sin2 �

= 2cos2 � � 1

= 1� 2 sin2 �

sin 2� = 2 sin � cos � :

we see that

� The matrix for reflection in the line at angle � with respect to the x-axis is

�
cos 2� sin 2�
sin 2� � cos 2�

�
:
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As a check on this calculation, note that this matrix has determinant �1. Note also that � and � + 180� give the
same matrix, as they should, since these two angles determine the same line of reflection. Finally, this matrix can
be computed by a direct geometric argument.

Exercise. Write a procedure reflect with one argument �, which changes the CTM by reflecting in the line at
angle � with respect to the x-axis.

Exercise. Let v0 be a point in 2D. Find a formula for a rotation of angle � around v0. Check by showing that v0
is fixed by your transformation.

Exercise. Show that every rigid motion in 2D which is not a translation is a rotation around some point. The
main problem is to show that there exists some point fixed by the transformation. You should be able to calculate
what it is.

Exercise. Given a line Ax+By +C = 0 write down a formula for reflection in this line.

Exercise. A sliding reflection in 2D reflects in some line called the axis of the transformation, and then slides
along parallel to this axis. Given a line Ax + By + C = 0 and a shift distance a write down a formula for the
combination of reflection in the line followed by a shift of a parallel to it.

Exercise. Show that every rigid transformation in 2D which is not a rigid motion is either a reflection through
some line or a sliding reflection.

Exercise. Find a formula for rotation around an axis v0 + t� in 3D.

Exercise. A helical motion in 3D is a motion which twists and shifts around an axis all at the same time. That is
to say it rotates around an axis and then shifts parallel to it. Show that every rigid motion in 3D which is not a
translation or a rotation is a helical motion.

Exercise. Write down the parametrization for a helix in 3D winding around the z-axis and shifting a distance a
in every coil.

3. Regular polygons

We will in this section restrict our attention to regular polygons, that is to say polygons with as much symmetry
as possible. All vertices will be at a fixed distance from the origin, and the lengths of all sides are the same.

As we travel around the outside of the polygon of n sides, we make n turns for a total of 360�. The internal angle
at each corner is therefore 180� � 360�=n.

If the figure has n sides, it has 2n symmetries in all—n rotations and n reflections. The geometry of the reflections
is a bit different for even and odd values of n.
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When n is odd, all reflections are through a line cutting through a vertex and the middle of a side, while if n is
even there are two kinds of reflections, in lines through vertices and in lines bisecting sides. In either case, the
partition of the polygon into chambers determined by its symmetry is into triangles with one vertex at the centre,
one at a vertex of the polygon, and one in the middle of a side. These chambers have the properties (1) any two
are equivalent with respect to symmetries of the figure, and (2) no symmetry of the figure is also a symmetry of
a chamber.

We can see easily from this why there are exactly 2n symmetries, 2 each for each of the n sides, since that’s how
the chambers are distributed.

The main reason why we are looking at regular polygons in 2D is because these polygons are the faces of the
Platonic solids (regular polyhedra) in 3D. There is one feature of the symmetries of a regular polygon which will
be crucial in constructing the regular polyhedra. Fix a single chamber. The property I want to single out here
is that each of the lines bordering that chamber (its sides or edges) is an axis of symmetry for the figure. To be
able to discuss what is going on more precisely, label those sides. The side meeting the side of the polygon will
be indexed by 1, the one meeting the vertex of the polygon will be labeled by 2. Similarly, let r1 and r2 be the
reflections in those sides. The effect of r1 is therefore to interchange the two chambers on the left, and the effect
of r2 is to interchange the two on the right.

r2

r1
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Let �1 and �2 be the unit vectors perpendicular to the lines of reflection of r1and r2. We choose the direction of
�i so that the chamber is on the same side of the line through the origin perpendicular to �i as �i is.

�2

�1

In our examples
�1 = (sin �;� cos �); �2 = (0; 1)

where � = �n = 360�=2n. These explicit vectors depend on the particular orientation of the polygon, but the
important properties are that both �1 and �2 have length 1 and that the angle between the two is 180���n. More
precisely:

�1 ��1 = 1

�2 ��2 = 1

�1 ��2 = � cos (180�=n)

Here is a table for small values of n:

n � cos(180�=n)

2 0

3 �1=2

4 �
p
2=2

5 �1=4�
p
5=4

6 �
p
3=2

Exercise. In all these cases cos(180�=n) involves a single radical, such as
p
2,
p
3,
p
5. Are there any others?

What happens if we apply several reflections alternately? If we apply r1r2 toC (first r2, then r1) we get the figure
on the left, and if we apply r2r1 (first r1, then r2) we get that on the right.

C

r2C

r1r2C

C

r1C

r2r1C

That is to say that r1r2 amounts to rotation counter-clockwise by 360�=n, while r2r1 amounts to a rotation by the
same angle in the opposite direction. Let � be rotation by 360�=n. Then the rotation symmetries of the n-sided
regular polygon are the transformation 1, �, : : : , �n�1. All the compositions r2�m with 0 � m < n have negative
determinant, and in fact run through all reflection symmetries. This implies, among other things, that every one
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of its symmetries can be expressed as a product in some order of r1 and r2. We shall more about this in the next
section.

Exercise. If r is a reflection through the x-axis and � a rotation through �, describe the line of reflection for r�.

4. Listing the symmetries of a regular polygon

The triangles in the figures above don’t seem to be added in a geometrically readable fashion. Now, however,
let’s look at the sequences of chambers r1(C), r1r2(C), r1r2r1(C):

Here, the chambers r1(C), r1r2(C), r1r2r1(C) form a geometrically connected chain of chambers, pictured all at
once in this figure:

Exercise. Write a PostScript program to draw the picture above. Incorporate routines which change the CTM by
a sequence of reflections r1 and r2, where the sequence is given as an array of entries 1 and 2.

Where are we heading? Suppose we are given a chain of chambers C0 = C , C1, C2, : : : , Cn from C to a final
chamber Cn. How can we write down a string of reflections whose product takes C to Cn? The answer is very
simple, but not quite intuitive. First of all, label each radial segment in the polygon by either 1 or 2—the ones
going to sides by 1, the ones going out to the vertices of the polygon by 2. This is consistent with our initial
labeling. For example, on the left I have marked all the segments labeled 1 and on the right those labeled 2.
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The main property of this labeling is that the labels are preserved by the symmetries of the figure: any symmetry
will take a side of type 1 into another of type 1, and one of type 2 to another of type 2. The classification of sides
into types is intrinsic to the geometry of the polygon.

� Suppose we are given a chain of chambers C0 = C , C1, C2, : : : , Cn from C to a final chamber Cn. Suppose
the successive segments separating these are labeled i1, i2, : : : in. If for each m we set

rm = ri1ri2 : : : rim

then rm(C) = Cm for all m.

The point is that the geometrical chain of chambers relates directly to multiplication by the simple reflections r1
and r2. The unusual feature is that we build the chain in the order opposite to that in which the reflections are
applied. The reason this is important is that it gives us a way to label all symmetries of the figure in a way that
relates directly to geometry. I shall elaborate on this in a moment.

The proof of the assertion is elementary. Let r = ri with i either 1 or 2. The chambers C and r(C) are separated
by a side of type i. When we apply s to this pair, the pair s(C) and sr(C) we get is again separated by a side of
type i, since the type of a side does not change when it is transformed by a symmetry.

C

r(C)

s(
C
)

sr
(C

)

Consider, for example, r2r1r2. We start with the pair C , r2(C) separated by a side of type 1. Then we want to
know that r2 and r2r1(C) are separated by a side of type 1. But this is the pair we get by applying r2 to the pair
C , r1(C). Etc.

One consequence is another proof of this basic fact:

� Every symmetry of a regular polygon can be expressed as a product of r1 and r2.

Explicitly, if s is a symmetry of the polygon, connect C and s(C) by a chain of chambers. This chain corresponds
to an expression for s in terms of r1 and r2.

We can in fact find a well defined and unique expression for every symmetry s, if we follow these rules: (1) We
connect s(C) and C by a chain of shortest length and write s in terms of that chain. (2) There is one symmetry s

for which there are two chains of minimal length connecting s(C) to C . For example if N = 5 then

r1r2r1r2r1(C) = r2r1r2r1r2(C)

as the picture shows.
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In this case we choose as the expression for s the one which is least in what is called inverse dictionary order,
namely r1r2r1r2r1. This is because r2r1r2r1r2 would come after r1r2r1r2r1 in a dictionary where words were
read backwards. In 2D this ordering is not important, but in 3D it helps us avoid chaos.

We can now make a list of all symmetries of a regular polygon. The order in which the elements are listed is to
be in inverse dictionary order. For N = 5 our list is this (where we use the ‘empty’ expression ; for the trivial
symmetry):

;
r1
r2r1
r1r2r1
r2r1r2r1
r1r2r1r2r1
r2
r1r2
r2r1r2
r1r2r1r2

Exercise. Let n = 6. Draw the chain for r1r2r1r2.

Exercise. List all the symmetries of the equilateral triangle, following the scheme above.

Exercise. List all the symmetries of the square, following the scheme above.

5. Regular polyhedra

A polyhedron in three dimensions is any figure which is a union of plane polygonal figures forming its boundary.
These polygonal surfaces are called the faces of the polyhedron. The sides of the faces are called the edges of the
polyhedron, and their corners are called its vertices.

A regular polyhedron in 3D is a polyhedron all of whose faces, edges, and vertices look the same. It is enough to
require that every face is a regular polygon and that any two faces must be congruent.

It was known very early to Greek mathematicians that there are only five regular polyhedra. As far as I know,
the earliest surviving discussion from the classical Greek period is in Euclid’s Book XIII, but the main facts were
certainly known earlier. Several Greek books written shortly after Euclid’s refer to earlier treatises apparently
then still in existence. Three of the regular polyhedra (the tetrahedron, cube, octahedron) are relatively simple,
but the remaining two (dodecahedron, icosahedron) are considerably more complicated. It is apparently not
known exactly how they were first discovered. (Refer to the introduction by Heath to Book XIII in his edition of
Euclid.)

We shall concern ourselves with two questions: (1) Why are there exactly five regular polyhedra? (2) How can
one construct them? We interpret the second question as meaning: Specify explicitly all of the vertices of the
polyhedra.
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Exercise. Answering the second question for the cube is trivial. The octahedron is not much more complicated,
since it can be derived from the cube. The tetrahedron is not quite so simple, but still reasonably elementary. List
all the vertices of a tetrahedron centred at the origin if one vertex is a (0; 0; 1) and a second is of the form (x; 0; z)
with x > 0.

The first question will be dealt with in this section, the second in the next.

Suppose we have a regular polyhedron. Its faces will all be congruent regular polygons, say of m sides. Each of
its vertices will look the same; let n be the number of faces surrounding each of them. For the cube, for example,
n = 3 and m = 4.

Pick one of its vertices. Cut away from the polyhedron all of its faces except the ones touching this vertex. On
each of these faces’ sides the angle between two neighbouring edges will be 180� � 360�=m. I now claim that as
I cycle around the vertex adding up the angles I meet on the faces, I have to get a total of less than 360�. Roughly
speaking, this claim amounts to the assertion that if we cut out the faces of a regular polyhedron around a given
vertex and then flatten them, we get one of the following figures:

To be precise, the claim implies that

180� 360=m < 360=n; 180 < 360

�
1

m
+

1

n

�
;

1

2
<

1

m
+

1

n
:

The integers m and n must be at least 3, since our figure is assumed to be genuinely three-dimensional. The
possibilities are hence quite limited, as the following table shows with more precision than the figure above.
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m n 1=m+ 1=n
� 3 3 2=3

� 4 7=12
� 5 8=15

6 1=2
� 4 3 7=12

4 1=2

� 5 3 8=15
4 9=20

6 3 1=2

In particular, we cannot have m or n greater than 5. Thus we get five possibilities in all. There is some subtle
logic here—this argument asserts that there at most 5 possibilities, but it does not guarantee that each possibility
is actually realized by a regular polyhedron. It is the construction in the next section that will do that.

The claim I have made is a special case of a much more general result about arbitrary convex polyhedra.

� For any convex polyhedron, the sum of angles on the faces around any of its vertices is less than 360�.

The term convex means, roughly, that the polyhedron bends outward at all vertices and edges. As before, what
the result means is that if we are given something like the cone on the left, then if we cut it and flatten it out we
get the figure on the right:

This result is almost intuitively true. However, as far as I can see, this intuition is based only on special cases
which do not cover all possibilities. This result is, at any rate, proven in Euclid (Book XI, Propositions 20 and 21),
and it is used exactly as we are using it in the classification of regular polyhedra. It is also possible to describe in
geometric terms the defect of the vertex (360� less the sum of the vertex angles), but that is another story.

6. Construction

Suppose we are given a regular polyhedron. We can partition its surface into chambers, just as we partitioned
a regular polyhedron into chambers. In fact, each chamber of the polyhedron will be a chamber of one of the
regular polygons making up the polyhedron’s faces. Fix one of the chambers, call it C . We can extend it into the
third dimension by joining its vertices to the origin O. Let $1 be the vertex at a corner of the polyhedron, $2 in
the middle of an edge, $3 in the centre of a face.
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$1

$2

$3

Each one of the $i gives rise to an integer ni, half the number of chambers surrounding the point $i. For
example, for the cube we have

n1 = 3; n2 = 2; n3 = 4 :

I now want to introduce three vectors �1, �2, �3. Each of them will have length 1. The vector�1 be perpendicular
to the face O$2$3, and it will be on the same side of this plane as the chamber C . Similarly, �2 be perpendicular
to the face O$1$3, and on the same side of this face as C . And �3 be perpendicular to the face O$1$2, on the
same side as C .

�1

�2

�3
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More precisely, in all cases we have the rules

k�ik = 1

�i �$j = 0 if j 6= i

�i �$i > 0

which determine the �i completely. We can also see what the angles between the various �i must be. For
example, �1 and �2 are both perpendicular to $3. Therefore if we project them onto a plane perpendicular to$3

they preserve their length. But if we project the polyhedron onto that plane we just get a regular polygon with
n3 sides and $3 as centre. We can apply what we said in a previous section about the � in that case:

�1 ��2 = cos(180� � 180�=n3) :

Similarly, if we project the polyhedron onto a plane perpendicular to $1, the configuration of $1 and its neigh-
bouring vertices projects to a regular polygon of n1 sides, and hence all in all

�2 ��3 = cos(180� � 180�=n1) :

It is also simple to see that
�1 ��3 = 0

All in all
�1 ��2 = � cos(180�=n3)

�1 ��3 = 0

�2 ��3 = � cos(180�=n1)

The real point of all this work is that

� These equations, a choice of scale and orientation of the polyhedron, and a choice of the ni allow us to
calculate the �i explicitly.

� From the �i we can calculate the $i.

� From these and some reasoning about the symmetries of the polyhedron we can construct all the faces.

We shall deal with these in order. We will take the radius of the polyhedron to be 1.

� Fix the vector �1 to be at (1; 0; 0). We may assume the vector �2 to be in the (x; y) plane with y > 0, and the
vector �3 to lie in the region z > 0. This only amounts to an alignment of the polyhedron.

We start with
�1 = (1; 0; 0) :

The angle between �1 and �2 is equal to 180� � 180�=n3. We also know that k�2k = 1. Therefore

�2 =
�
� cos(180�=n3); sin(180

�=n3); 0
�
= (x2; y2; 0) :

Note that y2 > 0.

Let
�3 = (x3; y3; z3) :

Recall that n2 = 2 in all cases. Thus
�1 ��3 = � cos(180�=n2)

= x3

�2 ��3 = � cos(180�=n1)

= x2x3 + y2y3
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so that
x3 = 0

y3 = � cos(180�=n1)=y2

z3 =

q
1� x2

3
� y2

3
:

� How to locate the vectors $i? Let �i be three vectors such that

�i � �j =

�
1 i = j
0 i 6= j

Then on the one hand, since $i satisfies the same conditions of perpendicularity, and $i
��i > 0, $i is a positive

multiple of �i. On the other we can find the �i in a very simple way. The equations for the �i assert that they are
the columns of the matrix N such that

tAN = I

so that
N = tA�1 :

To find $i we just have to scale �i correctly. For i = 1 this is simple, because k$1k = 1. For i = 2 or 3 let �1;i be
the angle between �1 and �i, which is the same as the angle between $1 and $i. Then the length of $i is cos �1;i.

� We now know the points $1, $2, and $3 on a single face containing the chamber C . Its centre is $3, and $1 is
one of its vertices. Let ri be reflection through the plane perpendicular to �i. Thus r1 and r2 both leave $3 fixed
and fix as well the face containing it. We get the other vertices on this face by applying the symmetries generated
by r1 and r2, which we know how to list because of our the results in 2D. The other faces of the polygon are what
we get by applying various symmetries of the polyhedron to this one face. Therefore we have to learn something
about the symmetries of the various polyhedra.

The reflection r3 will reflect this face into some other one. It will also reflect the chamber C into some other
chamber on this face. It is true here as in 2D that the number of symmetries is the same as the number of
chambers. The total number of chambers is the product of the number of chambers on one face and the number
of faces. We have the following table:

Type Number of faces Type of face Number of symmetries

tetrahedron 4 triangle 24

cube 6 square 48

octahedron 8 triangle 48

dodecahedron 12 pentagon 120

icosahedron 20 triangle 120

Symmetries correspond to chambers. If we are given a chamber then we can construct a path from it to the
chamber C , and corresponding to this path is an expression as a product of the ri. The ri are listed from left to
right in the order in which edges are crossed, and ri is inserted in an edge of type i is crossed. In 3D we label
the edges much as we did for 2D—the edge through which �i reflects is labeled by i. For each face this gives a
different indexing from the one we assigned earlier.

To each symmetry we can assign a unique expression as a product of the ri according to these rules: (1) We choose
the shortest expression if it is unique. This corresponds to a shortest path among the chambers. (2) If there are
several shortest paths, we choose the one least in the inverse dictionary order. For each face there will exist a
shortest one of these expressions taking our original face into it.

We get these lists generating all the faces. Of course all these expressions have to end in r3.
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Type Symmetries defining faces

tetrahedron ;
r3
r2r3
r1r2r3

cube ;
r3
r2r3
r1r2r3
r2r1r2r3
r3r2r1r2r3

octahedron ;
r3
r2r3
r1r2r3
r3r1r2r3
r2r3r1r2r3
r3r2r3r1r2r3
r3r2r3

dodecahedron ;
r3
r2r3
r1r2r3
r2r1r2r3
r1r2r1r2r3
r3r1r2r1r2r3
r2r3r1r2r1r2r3
r1r2r3r1r2r1r2r3
r2r1r2r3r1r2r1r2r3
r3r2r1r2r3r1r2r1r2r3
r3r2r1r2r3

icosahedron ;
r3
r2r3
r1r2r3
r3r1r2r3
r2r3r1r2r3
r1r2r3r1r2r3
r3r1r2r3r1r2r3
r2r3r1r2r3r1r2r3
r1r2r3r1r2r3r1r2r3
r3r1r2r3r1r2r3r1r2r3
r2r3r1r2r3r1r2r3r1r2r3
r3r2r3r1r2r3r1r2r3r1r2r3
r3r2r3r1r2r3r1r2r3
r3r2r3r1r2r3
r2r3r2r3r1r2r3
r1r2r3r2r3r1r2r3
r3r2r3
r2r3r2r3
r1r2r3r2r3
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In all cases, if we are given this list of expressions we can recreate the full list of symmetries in a simple fashion—we
just tack onto these expressions the strings representing the symmetries of the original face.

In the following figure, these paths are shown in the case of the dodecahedron.

7. Final remarks

One can construct regular polyhedra in higher dimensions as well, although it is nearly impossible to picture
them. As Coxeter’s book Regular Polytopes explains, the most interesting things happen in dimension 4. One can
also classify regular figures in affine and non-Euclidean geometry. The secret to understanding the construction
of every regular figure in every case is again its symmetry group. It is always generated by reflections with certain
products equal to two-dimensional rotations of certain kinds.
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