
CHAPTER 6

Curves

So far, the only paths we have learned how to draw in PostScript are sequences of line segments. It is possible

to assemble a good approximation of just about any curve by a large number of segments, but there are more
elegant and efficient ways, involving Bézier curves .

6.1. Arcs

The simplest curves are circles. There are two special commands to draw circles and pieces of circles. The
sequence

0 0 10 47 67 arc

will add to the current path the short arc of a circle of radius 10, centerd at the origin, between arguments 47◦

and 67◦. If arcn is used it will draw the clockwise arc around the long way, instead (arcn for arc negative).

It would be a good idea to investigate here what ‘adding to the current path’ means, because it is behavior many

of our later procedures will imitate. Here are two short sketches that should illustrate how it works. In the first,

we draw a line and then continue drawing an arc. The default behavior is for an arc to continue the current path
in this way—to add a line from the last point of the previous path to the first point of the arc. Sometimes this

is not what one wants or expects, in which case it is necessary to add a moveto to break up the path, as in the
second figure.

newpath

0 0 moveto

1 0 lineto

0 0 1 45 90 arc

stroke

newpath

0 0 moveto

1 0 lineto

45 cos 45 sin moveto

0 0 1 45 90 arc

stroke

Another curiousity of arc is that in a coordinate system in which yunits are distinct from xunits it produces an
ellipse. In other words, it always draws the locus of an equation (x − a)2 + (y − b)2 = r2 in user coordinates

(x, y). If the axes are not perpendicular or the x and y units are different, it will look like an ellipse.

Chapter 6. Curves 2

6.2. Fancier curves

Lines and arcs of circles make up a very limited repertoire. PostScript allows a thirdmethod to build paths, which

is much more versatile. In creating complicated paths, for example the outlines of characters in a font, this third

method is indispensable.

Conceptually, the simplestway to draw even a complicated curve is by drawing a sequence of line segments—that

is to say, making a polygonal approximation to it—but this usually requires a very large number of segments to
be at all acceptable. It also suffers from the handicap that it is not very scalable—that is to say, even if a collection

of segments looks smooth at one scale, it may not look good at another. Here, for example, is a portion of the

graph of y = x4 drawn with eight linear segments.

The overall shape is not too bad, but the breaks are quite visible. You can certainly improve the quality of the

curve by using more segments, but then the number of segments required to satisfy the eye changes with the

scale used in representing the curve. One trouble is that the human eye can easily perceive that the directions
vary discontinuously in this figure. This is not at all something to be taken for granted—the more we learn about

vision in nature the more we learn that most features like this depend on sophisticated image processing. In

contrast, the human eye apparently has trouble perceiving discontinuities in curvature.

In any event, it is better, if possible, to produce smooth curves—at least as smooth as the physical device at hand

will allow. PostScript does this by approximating segments of a curve by Bézier cubic curves . This allows us to
have the tangent direction of a curve vary continuously as well.

The Bézier curve is the last major ingredient of PostScript to be encountered. In the rest of this book we shall
learn how to manipulate and combine the basic tools we have already been introduced to.

6.3. Bézier curves

In PostScript, to add a curved path to a path already begun, you put in a command sequence like

1 1

2 1

3 0

curveto

This makes a curve starting at the current point P0, ending at P3 = (3, 0), and in between following a path
controlled by the intermediate points P1 = (1, 1) and P2 = (2, 1). If there is no current point, a moveto command
should precede this. Thus:

0 0 moveto

1 1

2 1

3 0

curveto

would make a complete curve starting at (0, 0).

Chapter 6. Curves 3

In short, curveto behaves very much like lineto but depends on a larger set of points. At any rate, what we get
is this (where the four relevant points are marked):

P0

P1 P2

P3

In this book I shall usually call P0 and P3 the end points and P1 and P2 the control points of the curve.

Occasionally I shall just call all of them control points, which is more standard terminology. Even from this single

picture you will see that the effect of the control points on the shape of the curve is not so simple. In order to
draw curves efficiently and well, we have to understand this matter much better. We shall see later the exact

mathematics of what is going on, but right now I shall simply exhibit several examples.

You should be able to see from these examples that the use of control points to specify curves becomes intuitive

with experience. The following facts may give a rough feeling for how things go.

(1) The path starts at P0 and ends at P3.
(2) When the curve starts out from P0 it is heading straight for P1.
(3) Similarly, when it arrives at P3 it is coming from the direction of P2.
(4) The longer the line from P0 to P1, the tighter the curve sticks to that line when it starts out from P0.
Similarly for P2 and P3.

Chapter 6. Curves 4

There is another fact that is somewhat less apparent.

(5) If we wrap up the four points Pi in a quadrilateral box, then the whole curve is contained inside that box.

The intuitive picture of a Bézier curve conceives of it as a path followed by a particle in motion between certain

times. The vector from P0 to P1 is proportional to the velocity of the particle as it starts out from P0, and the
vector from P2 to P3 is proportional to its velocity when it arrives at P3. Another way of putting this is that

roughly speaking the control points are a convenient way to encode the initial and final velocities in geometric

data. This explains properties (2), (3), and (4). Property (5) is implied by the fact that any point on the curve is
some kind of weighted average of the four points Pi, as we shall see later.

Curves drawn by using control points in this way are called Bézier curves after the twentieth century French
automobile designer Pierre Bézier who was one of the very first to use them extensively in computer graphics,

even though their use in mathematics under the name of cubic interpolation curves is much older.

One natural feature of Bézier curves described by control points is that they are stable under arbitrary affine

transformations—that is to say that the affine transformation of a Bézier curve is the Bézier curve defined by the

affine transformations of its control points. This is often an extremely useful property to keep in mind.

Exercise 6.1. Write a PostScript procedure pixelcurvewith arguments 4 arrays P0, P1, P2, P3 of size 2, with
the effect of drawing the corresponding Bézier curve, including also black pixels of width 0.05′′ at each of these
points.

6.4. How to use B ézier curves

In this section we shall be introduced to a recipe for using Bézier curves to draw very general curves. In the next
this recipe will be justified. In order to make the recipe plausible, we shall begin by looking at the problem of

how to approximate a given curve by polygons.

The first question we must answer, however, is more fundamental: How are curves to be described in the first
place? In this book the answer will usually be in terms of a parametrization . Recall that a parametrized curve
is a map from points of the real line to points in the plane—that is to say, to values of t in a selected range we
associate points (x(t), y(t)) in the plane. It often helps one’s intuition to think of the parameter t as time, so as
time proceeds we move along the curve from one point to another. In this scheme, with a parametrization P (t),
the velocity vector at time t is the limit of average velocities over smaller and smaller intervals of time (t, t + h):

V (t) = P ′(t) = lim
h→0

P (t + h) − P (t)

h
= [x′(t), y′(t)] .

Chapter 6. Curves 5

The direction of the velocity vector is tangent to the curve, and its magnitude is determined by the speed of

motion along the curve.

Example. The unit circle with center at the origin has parametrization t 7→ (cos t, sin t).

Example. If f(x) is a function of one variable x, its graph has the parametrization t 7→ (t, f(t)).

In other words, a parametrization is essentially just a pair of functions (x(t), y(t)) of a single variable, which
is called the parameter. The parameter often has geometric significance. For example, in the parametrization

t 7→ (cos t, sin t) of the unit circle it is the angle at the origin between the positive xaxis and the radius to the
point on the circle.

Example. Besides the standard parametrization of the circle there is another interesting one. If ℓ is any line
through the point (1, 0) other than the vertical line x = 1, it will intersect the circle at exactly one other point on
the circle.

y = m(x − 1)

The equation of such a line will be y = m(x − 1) = mx − m, where m is its slope. The condition that a point
(x, mx − m) lie on the circle is

x2 + y2 = 1

= x2 + m2(x − 1)2

= x2(1 + m2) − 2m2x + m2

x2 − 2
m2

m2 + 1
x +

m2 − 1

m2 + 1
= 0

(x − 1)

(

x −
m2 − 1

m2 + 1

)

= 0

so that

x =
m2 − 1

m2 + 1
, y =

−2m

m2 + 1
.

Chapter 6. Curves 6

As m varies from −∞ to ∞ the point (x, y) traverses the whole circle except the point (1, 0). Thus m is a
parameter, and

m 7−→

(

m2 − 1

m2 + 1
,

−2m

m2 + 1

)

a kind of parametrization of the unit circle. This has historical significance. If we setm = p/q to be a fraction, the
point (x, y)will be a point on the unit circle with rational coordinates, say (a/c, b/c)with (a/c)2 + (b/c)2 = 1. If
we clear denominators, we obtain a set of three integers a, b, cwith a2+b2 = c2. Such a set is called a Pythagorean
triple . There is evidence that this construction was known to the Babylonians in about 1800 B.C.

Exercise 6.2. Use this idea to find the smallest several Pythagorean triples.

Example. There are two common ways to specify a curve in the plane. The first is a parametrization. The second
is an equation relating x and y. An example is the oval

x4 + y4 = 1 .

This is not the graph of a function, and it has no obvious single parametrization. We can solve the equation

x4 + y4 = 1 to get

y =
4

√

1 − x4

which gives the top half of our oval, and get the bottom half similarly. Neither half is yet the graph of a good

function, however, because both have infinite slope at x = ±1. We can, however, restrict the range of x away

from±1, say to [− 4

√

1/2, 4

√

1/2]. We can then turn the curve sideways and now solve for x in terms of y to write
the rest as a graph rotated 90◦. To summarize, we can at least express this curve as the union of four separate
pieces, each of which we can deal with.

Exercise 6.3. Findaparametrizationof this oval bydrawing inside it a circle, and takingas thepoint corresponding
to t the point of intersection of the oval with the ray from the origin at angle t.

Exercise 6.4. Sketch the curve y2 = x2(x + 1) by hand in the region |x| ≤ 3, |y| ≤ 3. Find a parametrization of
this curve by using the fact that the line y = mx will intersect it at exactly one point other than the origin. Write
down this parametrization. Use it to redo your sketch in PostScript, in any way that looks convincing, to check
your drawing.

With this understanding of how a curve is given to us, the question we are now confronted with is this:

Chapter 6. Curves 7

• Given a parametrization t 7→ P (t) of a curve in the plane, how do we draw part of it using Bézier curves?

If we were to try to draw it using linear segments, the answer would go like this: Suppose we want to draw the

part betweengivenvalues t0 and t1 of t. Wedivide the interval [t0, t1] inton smaller intervals [t0+ih, t0+(i+1)h],
and then draw lines P (t0)P (t0 + h), P (t0 + h)P (t0 + 2h), P (t0 + 2h)P (t0 + 3h), etc. Here h = (t1 − t0)/n. If
we choose n large enough, we expect the series of linear segments to approximate the curve reasonably well.

To use Bézier curves, we will follow the roughly the same plan—chop the curve up into smaller pieces, and on

each small piece attempt to approximate the curve by a single Bézier curve. In order to do that, the essential

problem we face is this: Suppose we are given two values of the parameter t, which we may as well assume to
be t0 and t1, and which we assume not to be too far apart. How do we approximate by a single Bézier curve the
part of the curve parametrized by the range [t0, t1]?

Calculating the end points is no problem. But how to get the two interior control points? Since they have

something to do with the directions of the curve at the end points, we expect to use the values of the velocity

vector at the endpoints. The exact recipe is this. Start by setting

P0 = (x(t0), y(t0))

P3 = (x(t1), y(t1)) .

These are the end points of our small Bézier curve. Then set

∆t = t1 − t0

P1 = P0 + (∆t/3)P ′(t0)

P2 = P3 − (∆t/3)P ′(t1)

to get the control points.

Example. Let’s draw the graph of the parabola y = x2 for x in [−1, 1]. It turns out that a single Bézier curve will
make a perfect fit over the whole range. Here the parametrization is P (t) = (t, t2), P ′(t) = [1, 2t].

t0 = −1

t1 = 1

∆t = 2

P0 = (−1, 1)

P1 = (1, 1)

P ′(−1) = (1,−2)

P ′(1) = (1, 2)

P1 = P0 + (2/3)P ′(t0)

= (−1/3,−1/3)

P2 = (1/3,−1/3)

Chapter 6. Curves 8

Example. Let’s draw the graph of y = x4 for x = −1 to x = 1. Here P (t) = (t, t4), P ′(t) = (1, 4t3). We shall do
this with 1, 2, and 4 segments in turn.

(a) One segment [−1], 1]. We have this table, with the control points interpolated.

x y x′ y′

−1.0000 1.0000 1.0 −4.0
−0.3333−1.6667
0.3333−1.6667
1.0000 1.0000 1.0 4.0

The approximation is foul. Droopy.

(b) Two segments [−1, 0] and [0, 1].

x y x′ y′

−1.0000 1.0000 1.0 −4.0
−0.6667 0.3333
−0.3333 0.0000
0.0000 0.0000 1.0 0.0
0.3333 0.0000

0.6667 0.3333
1.0000 1.0000 1.0 4.0

Somewhat better.

Chapter 6. Curves 9

(c) Four segments [−1.0,−0.5], [−0.5, 0.0], [0.0, 0.5], [0.5, 1.0].

x y x′ y′

−1.0000 1.0000 1.0 −4.0
−0.8333 0.3333
−0.6667 0.1458
−0.5000 0.0625 1.0 −0.5
−0.3333 −0.0208
−0.1667 0.0000

0.0000 0.0000 1.0 0.0
0.1667 0.0000
0.3333 −0.0208
0.5000 0.0625 1.0 0.5
0.6667 0.1458
0.8333 0.3333
1.0000 1.0000 1.0 4.0

It is almost indistinguishable from the true graph. It is perhaps only when you see where the control points lie

that you notice the slight rise in the middle.

Exercise 6.5. In many situations, drawing a parametrized path by Bézier curves, using the velocity vector to
produce control points, is more trouble than it’s worth. This is true even if the procedure is to be automated
somewhat as explained in the next chapter, since calculating the velocity can be quitemessy. There is one situation
in Bézier plotting is definitely themethod of choice, however, and that is when the path is given by a path integral.
The Cornu spiral, for example, is the path in the complex plane defined by

C(t) =

∫ t

0

e−is2

ds

as t ranges from−∞ to∞. In this case, C(t) can only be approximated incrementally by numerical methods, say
by Simpson’s rule, but the velocityC ′(t) comes out of the calculation at no extra cost, since it is just the integrand.
Furthermore, evaluating C(t) will be expensive in effort since each step of the approximation involves some
work, so the fewer steps taken the better.

Chapter 6. Curves 10

Plot the Cornu spiral, which is shown above, using Bézier curves. One subtle point in this figure is that the
thickness of the path above decreases as the curve spirals further in, because otherwise the spirals would be
clotted.

Exercise 6.6. The remarks in the previous exercise are just as valid for the plots of first order differential equations
in the plane by numerical methods. Plot using Bézier curves the trajectories of

[

x′

y′

]

=

[

−1 −1
1 −1

] [

x
y

]

starting at a few uniformly distributed points around the unit circle.

6.5. The mathematics of B ézier curves

The mathematical problem we are looking at in drawing good curves in computer graphics is that of approx
imating an arbitrary parametrized path t 7→ (x(t), y(t)) by a simpler one. If we are approximating a path by
line segments, for example, then we are replacing various pieces of the curve between points P0 = P (t0) and
P1 = P (t1) by a linearly parametrized path

t 7→
(t1 − t)P0 + (t − t0)P1

(t1 − t0)

from one point to the other. This parametrization can be better understood if we write this as

t 7→ (1 − s)P0 + sP1 where s =
t − t0
t1 − t0

.

With Bézier curves, we are asking for a parametrization from one point to the other with the property that its

coordinates are cubic polynomials of t (instead of linear). In other words, we are looking for approximations to
the coordinates of a parametrization by polynomials of degree three. We expect an approximation of degree three

to be much better than a linear one.

The Bézier curve, then, is to be a parametrized path B(t) from P0 to P3, cubic in the parameter t, and depending
in some way on the interior control points P1 and P2. Here it is:

B(t) =
(t1 − t)3P0 + 3(t − t1)

2(t − t0)P1 + 3(t1 − t)(t − t0)
2P2 + (t − t0)

3P3

(t1 − t0)3

= (1 − s)3P0 + 3(1− s)2sP1 + 3(1− s)s2P2 + s3P3

(

s = (t − t0)/(t1 − t0)
)

.

Chapter 6. Curves 11

We shall justify this formula later on. The form using s is easier to calculate with than the other, as well as more
digestible.

It is simple to verify that

B(t0) = P0

B(t1) = P3 .

We can also calculate (term by term)

(t1 − t0)
3B′(t) = −3(t1 − t)2P0 + 3(t1 − t)2P1 − 6(t − t0)(t1 − t)P1

+ 6(t − t0)(t1 − t)P2 − 3(t − t0)
2P2 + 3(t − t0)

2P3

B′(t) =
3(t1 − t)2(P1 − P0) + 6(T − t0)(t − t1)(P2 − P1) + 3(t − t0)

2(P3 − P2)

(t1 − t0)3

B′(t0) =
3(P1 − P0)

t1 − t0

B′(t1) =
3(P3 − P2)

t1 − t0

These calculations verify our earlier assertions relating the control points to velocity, since we can deduce from

them that

P1 = P0 +

(

t1 − t0
3

)

B′(t0)

P2 = P3 −

(

t1 − t0
3

)

B′(t1) .

6.6. Quadratic B ézier curves

A quadratic B ézier curve determined by three control points P0, P1, and P2 is defined by the parametrization

Q(s) = (1 − s)2P0 + 2s(1 − s)P1 + s2P2 .

P0

P1

P2

It is a degenerate case of a Bézier curve, with control points P0, (1/3)P0 + (2/3)P1, (2/3)P1 + (1/3)P2, P2, as

you can easily check. But sometimes it is easy to find control points for a quadratic curve, not so easy to find

good ones for a cubic curve. One good example arises in drawing implicit curves f(x, y) = 0. In this case, we
can often calculate the gradient vector [∂f/∂x, ∂f/∂y] and then that of the tangent line

∂f

∂x
(x − x0) +

∂f

∂y
(y − y0) = 0

at a point (x0, y0) on the curve. But we can approximate the curve between two points P andQ by the quadratic
Bézier curve with intermediate control point the intersection of the two tangent lines at P and Q. The figure
below shows how the curve x2 +y2−1 = 0 is approximated by four quadratic curves (in red). An approximation
by eight quadratic curves is just about indistinguishable from a true circle.

Chapter 6. Curves 12

6.7. Mathematical motivation

In using linear or Bézier paths to do computer graphics, we are concerned with the problem of approximating

the coordinate functions of an arbitrary path by polynomials of degree one or three. Considering each coordinate
separately, we are led to try to approximate an arbitrary function of one variable by a polynomial of degree one

or three.

The basic difference between linear approximations and cubic approximations lies in the following facts:

• If t0, t1, y0, and y1 are given then there exists a unique linear function f(t) such that

f(t0) = y0

f(t1) = y1

• Given t0, t1, y0, y1, v0, v1, there exists a unique cubic polynomial f(t) such that

f(t0) = y0

f ′(t0) = v0

f(t1) = y1

f ′(t1) = v1 .

Roughly speaking, with linear approximations we can only get the location of end points exactly, but with cubic
approximation we can get directions exact as well.

We shall prove here the assertion about cubic functions. If

f(t) = a0 + a1t + a2t
2 + a3t

3

then the conditions on P (t) set up four equations in the four unknowns ai which turn out to have a unique

solution (assuming of course that t0 6= t1). Here are the equations:

a0 + a1t0 + a2t
2
0 + a3t

3
0 = y0

a1 + 2a2t0 + 3a3t
2
0 = v0

a0 + a1t1 + a2t
2
1 + a3t

3
1 = y1

a1 + 2a2t1 + 3a3t
2
1 = v1

The coefficient matrix is

1 t0 t20 t30

1 2t0 3t20
1 t1 t21 t31

1 2t1 3t21

Chapter 6. Curves 13

It has already been remarked that the mathematics is simplified by normalizing the parameter variable t, so that
instead of going from t0 to t1 it goes from 0 to 1. This is done by defining a new parameter variable

s =
t − t0
t1 − t0

.

Note that s takes values 0 and 1 at the ends t = t0 and t = t1. Changing the parameter variable in this way
doesn’t affect the curve traversed. It simplifies the assertion above.

• Given y0, y1, v0, v1, there exists a unique cubic polynomial f(t) such that

f(0) = y0

f ′(0) = v0

f(1) = y1

f ′(1) = v1 .

The coefficient matrix is now
1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3

I leave it to you as an exercise to check now by direct row reduction that the determinant is not zero, which
implies that the system of four equations in four unknowns has a unique solution. Of course we know from the

formula used in the previous section what the explicit formula is, but the reasoning in this section shows that this

formula is the well defined answer to a natural mathematical question.

Exercise 6.7. What is the determinant of this 4 × 4matrix?

Exercise 6.8. Find the coefficients ai explicitly.

If we put together the results of this section with those of the previous one, we have this useful characterization:

• Given two parameter values t0, t1 and four points P0, P1, P2, P3, the Bézier path B(t) is the unique path
(x(t), y(t)) with these properties:
(1) The coordinates are cubic as a function of t;
(2) B(t0) = P0, B(t1) = P3;
(3) B′(t0) = 3(P1 − P0)/∆t and B′(t1) = 3(P3 − P2)/∆t, where∆t = t1 − t0.

The new assertion here is uniqueness. Roughly, the idea is that four control points require eight numbers, and

that the cubic coordinate functions also require eight numbers.

6.8. Weighted averages

The formula for a linear path from P0 to P1 is

P (t) = (1 − t)P0 + tP1

= P0 + t(P1 − P0) .

We have observed before that P0 + t(P1 − P0)may be seen as the point t of the way from P0 to P1. When t = 0
this gives P0, and when t = 1 it gives P1. There is also an intuitive way to understand the first formula that we
have not considered so far.

Let’s begin with some examples. With t = 1/2we get the midpoint of the segment

P0 + P1

2

Chapter 6. Curves 14

which is the average of the two. With t = 1/3we get the point one third of the way

2P0 + P1

3

which is to say that it is a weighted average of the endpoints with P0 given twice as much weight as P1.

There is a similar way to understand the formula for Bézier curves. It is implicit in what was said in the last

section that the control points Pi determine a cubic path from P0 to P1

B(t) = (1 − t)3P0 + 3t(1 − t)2P1 + 3t2(1 − t)P2 + t3P3

and that this path is a parametrization of the Bézier curve with these control points. In other words, B(t) is
a weighted combination of the control points. It is actually an average—which is to say, that the sum of the

coefficients is 1:
(1 − t)3 + 3t(1 − t)2 + 3t2(1 − t) + t3 =

(

(1 − t) + t
)3

= 1

by the binomial theorem for n = 3, which asserts that

(a + b)3 = a3 + 3a2b + 3ab2 + b3 .

Since all the coefficients in our expression are nonnegative for 0 ≤ t ≤ 1, B(t) will lie inside the quadrilateral
wrapped by the control points.

This idea will now be explored in more detail.

If P0, P1, . . . Pn−1 is a collection of n points in the plane, then a sum

c0P0 + c1P1 + · · · + cn−1Pn−1

is called a weighted average of the collection if (1) all the ci ≥ 0; (2) the sum of all the ci is equal to 1. In the
rest of this section, our primary goal will be to describe geometrically the set of all points we get as the weighted

averages of a collection of points, as the coefficients vary over all possibilities.

If n = 2, we know already that the set of all weighted averages c0P0 + c1P1 is the same as the line segment

between P0 and P1, since we can write c1 = t, c0 = (1 − t).

Suppose n = 3, and consider the weighted average

c0P0 + c1P1 + c2P2 .

Let’s look at an explicit example—look more precisely at

P = (1/4)P0 + (1/4)P1 + (1/2)P2 .

The trick we need to carry out is to rewrite this as

P = (1/2)[(1/2)P0 + (1/2)P1] + (1/2)P2 = (1/2)Q + (1/2)P2

whereQ = (1/2)P0 + (1/2)P1. In other words, P is the weighted average of the two pointsQ and P2. The point
Q is the weighted average of the original points P0 and P1, hence must lie on the line segment between P0 and

P1. In other words, we have the following picture:

Chapter 6. Curves 15

P0 P1

P2

P

Q

Now we can almost always perform this trick, since we can write

c0P0 + c1P1 + c2P2 = (c0 + c1)

((

c0

c0 + c1

)

P0 +

(

c1

c0 + c1

)

P1

)

+ c2P2

unless c0 + c1 = 1 − c2 = 0. In the exceptional case we are just looking at P2 itself, and in all other cases each

weighted average of the three points is a weighted average of P2 with a point on the line segment between P0

and P1. In other words, the set of all weighted averages of the three points coincides with the triangle spanned

by the three points.

P0 P1

P2

If we now look at four points, we get all the points on line segments connecting P3 to a point in the triangle
spanned by the first three. And in general we get all the points in a shape called the convex hull of the collection
of points, which may be described very roughly as the set of points which would be contained inside a rubber

band stretched around the whole collection and allowed to snap to them.

Chapter 6. Curves 16

The convex hull of a set of points in the plane or in space is very commonly used in mathematical applications,
and plays a major role in computational graphics as well.

Exercise 6.9. Write the simplest procedure you can with these properties: (1) it has two arguments x0 and x1

and (2) it draws the graph of y = x2 between x0 and x1 with a single Bézier curve.

Exercise 6.10. Draw y = x5 between x = −1 and x = 1 in the same way we drew y = x4 earlier.

6.9. How the computer draws B ézier curves

In this section we shall see how the computer goes about drawing a Bézier curve. It turns out to be an extremely

efficient process. First of all, a computer ‘thinks of’ any path as a succession of small points (pixels) on the

particular device it is dealing with. This is somewhat easier to see on a computer screen, certainly if you use
a magnifying glass, but remains true even of the highest resolution printers. So in order to draw something it

just has to decide which pixels to color. It does this by an elegant recursive procedure, something akin to the
following way to draw a straight line segment: (1) Color the pixels at each end. (2) Color the pixel at the middle.

(3) This divides the segment into two halves. Apply steps (2) and (3) again to each of the halves. And so on, until

the segments you are looking at are so small that they cannot be distinguished from individual pixels.

The analogous construction for Bézier curves, attributed to the car designer de Casteljau, goes like this:

Start with a Bézier curve with control points P0, P1, P2, P3. Perform the following construction. Set

P01 = the median between P0 and P1

P12 = the median between P1 and P2

P23 = the median between P2 and P3

P012 = the median between P01 and P12

P123 = the median between P12 and P23

P0123 = the median between P012 and P123

P0

P1 P2

P3

P01

P12

P23

P012 P123P0123

P •

0

P •

1

P •

2 P •

3

Then set
P •

0 = P0

P •

1 = P01

P •

2 = P012

P •

3 = P ••

0 = P0123

P ••

1 = P123

P ••

2 = P23

P ••

3 = P3 .

The point P •

3 turns out to lie on the Bézier curve determined by the original points Pi, at approximately the

halfway point. The Bézier curve can now be split into two halves, each of which is itself a Bézier cubic, and the
control points of the two new curves are among those constructed above. The two halves might be called the

Bézier curves derived from the original. The points P •

i are those for the first half, the P ••

i for the second. If

Chapter 6. Curves 17

we keep subdividing in this way we get a sequence of midpoints for the smaller segments (actually a kind of
branched list), and to draw the curve we just plot these points after the curve has been subdivided far enough.

This sort of subdivision can be done very rapidly by a computer, since dividing by two is a onestep operation in

base 2 calculations, and in fact drawing the pixels to go on a straight line is not a great deal faster.

Exercise 6.11. Draw the figure above with PostScript.

Exercise 6.12. The point P •

1 is (1/2)P0 +(1/2)P1. Find similar expressions for all the points constructed in terms
of the original four.

Exercise 6.13. The purpose of this exercise is to prove that each half of a Bézier curve is also a Bézier curve. Let

P (s) = (1 − s)3P0 + 3s(1− s)2P1 + 3s2(1 − s)P2 + s3P3 .

The point is to verify that this formula agrees with the geometrical process described above. Let P •

1 etc. be the
points defined just above. The first half of the Bézier curve we started with is a cubic curve with initial parameter
0 and final parameter 1/2. Let∆t = 1/2. Verify that

P (0) = P0 (trivial)

P ′(0) = (∆t/3)(P •

1 − P0) (almost trivial)

P (1/2) = P •

3

P ′(1/2) = (∆t/3)(P •

3 − P •

2) .

These equations, by the earlier characterization of control points in terms of derivatives, guarantee that the first
half of the original Bézier path is a Bézier path with control points P0 = P •

0 , P
•

1 , P
•

2 , P
•

3 .

Exercise 6.14. Howmight a computer construct quadratic Bézier curves in a similar way?

6.10. Bernstein polynomials

The Bézier cubic polynomial

y0(1 − t)3 + 3y1(1 − t)2t + 3y2(1 − t)t2 + y3t
3

is just a special case of a more general construction of Bernstein polynomials . In degree one we have the linear
interpolating function

y0(1 − t) + y1t ,

in degree two we have the quadratic functions mentioned earlier, and in degree n we have the polynomial

By(t) = y0(1 − t)n + ny1t(1 − t)n−1 +
n(n − 1)

2
y2 (1 − t)n−2t2 + · · · + yntn

where y is the array of the control values yi and the other coefficients make up the nth row of Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

. . .

These polynomialswerefirst definedby theRussianmathematician Sergei Bernstein in the early twentieth century

in order to answer a sophisticated question in approximation theory.

Chapter 6. Curves 18

These also are weighted sums of the control values, so for 0 ≤ t ≤ 1 the value of By(t) will lie in the range
spanned by the yi. In particular, if the yi are a nondecreasing sequence

y0 ≤ y1 ≤ . . . yn

then y0 ≤ By(t) ≤ yn for 0 ≤ t ≤ 1. But much more can be said.

Exercise 6.15. Prove that
B′

y(t) = nB∆y(t)

where∆y is the array of differences

∆y = (y1 − y0, y2 − y1, . . . , yn − yn−1) .

Exercise 6.16. Prove that if the yi are nondecreasing then By(t) is a nondecreasing function over the range
[0, 1].

Exercise 6.17. There is a way to evaluate By(t) for 0 ≤ t ≤ 1 along the lines used by the computer to construct
the Bézier cubic curve. It can be described best in a recursive fashion. First of all, if y has length 1 the Bernstein
polynomial is just a constant. Otherwise, with n > 0, form a derived sequence of length n − 1:

δy = ((1 − t)y0 + ty1, . . . , (1 − t)yn−1 + tyn) .

Then
By(t) = Bδy(t) .

Prove this. Explain how this process is related to the naı̈ve construction of Pascal’s triangle, one row at a time.

6.11. This section brings you the letter O

Paths can be constructed in PostScript in various ways through commands moveto, etc. but internally PostScript
stores a path as an array storing exactly 4 different types of objects—moveto, lineto, curveto, closepath

tags together with the arguments of the command. This array can be accessed explicitly by means of the

command pathforall. This command has four arguments, each of which is a procedure. It loops through all
the components of the current path, pushing appropriate data on the stack and then applying the procedures

respectively to moveto, lineto, curveto, and closepath components. For moveto and lineto components it
pushes the corresponding values of x and y in current user coordinates; for curveto it pushes the six values of x1,

y1, etc. (also in user coordinates); and for closepath it pushes nothing. The following procedure, for example,

displays the current path.

/path-display {

{ [3 1 roll (moveto)] == }

{ [3 1 roll (lineto)] == }

{ [7 1 roll (curveto)] == }

{ [(closepath)] == }

pathforall

} def

The following procedure tells whether a current path has already been started, since it returns with true on the

stack if and only if the current path has at least one component.

Chapter 6. Curves 19

/thereisacurrentpoint{

false {

{ 3 { pop } repeat true exit }

{ 3 { pop } repeat true exit }

{ 7 { pop } repeat true exit }

{ pop true exit }

} pathforall

} def

The most interesting paths in PostScript are probably strings—i.e. the paths formed by strings when the show

operator is applied, or in other words the path the string will make when it is drawn in the current font. This

outline can be accessed as a path by applying the command charpath, which has two arguments. The first is a
string. The second is a boolean variable which is more or less irrelevant to our purposes. The command appends

the path described by the string in the current graphics environment to the current path, assuming in particular

that a font has been selected. In this way, for example, you can deal with the outlines of strings as if they were
ordinary paths. The code

/Times-Roman findfont

40 scalefont

setfont

newpath

0 0 moveto

(Times-Roman) false charpath

gsave

1 0 0 setrgbcolor

fill

grestore

stroke

produces

You can combine charpath and pathforall to see the explicit path determined by a string, but only under

suitable conditions. Many if not most PostScript fonts have a security mechanism built into them that does not
allow the paths of their characters to be deconstructed, and you will get an error from pathforall if you attempt

to do so. So if you want to poke around in character paths you must be working with a font that has not been
declared inaccessible. This is not a serious restriction for most of us, since there are many fonts, including the

ones usually stocked with GhostScript, that are readable. Here is the path of the character ‘O’ from the font called

/Times-Roman by GhostScript:

0.360998541 0.673999 moveto

0.169997558 0.673999 0.039997559 0.530835 0.039997559 0.33099854 curveto

0.039997559 0.236999512 0.0697631836 0.145998538 0.119995117 0.0879980475 curveto

0.177995607 0.0249975584 0.266994625 -0.0140014645 0.354995131 -0.0140014645 curveto

0.551994622 -0.0140014645 0.689997554 0.125998542 0.689997554 0.326999515 curveto

0.689997554 0.425998539 0.660305202 0.510998547 0.603996575 0.570998549 curveto

0.540996075 0.639997542 0.456999511 0.673999 0.360998541 0.673999 curveto

closepath

0.360996097 0.63399905 moveto

0.406997085 0.63399905 0.452998042 0.618159175 0.488999 0.58999753 curveto

Chapter 6. Curves 20

0.542998075 0.540998518 0.58 0.44699952 0.58 0.328000486 curveto

0.58 0.269001454 0.564633787 0.200002447 0.540998518 0.148002923 curveto

0.531999528 0.123002931 0.515 0.098002933 0.491999507 0.0750024393 curveto

0.456999511 0.0400024429 0.411999524 0.0260009766 0.358999 0.0260009766 curveto

0.312998056 0.0260009766 0.26799804 0.04253418 0.232998043 0.0710034147 curveto

0.180998534 0.117004395 0.15 0.218005374 0.15 0.329006344 curveto

0.15 0.431005865 0.177197263 0.528005362 0.217998043 0.575004876 curveto

0.256997079 0.618005395 0.30599609 0.63399905 0.360996097 0.63399905 curveto

closepath

0.721999526 -0.0 moveto

and here is the first Bézier curve in the path:

References

1. R. E. Barnhill and R. F. Riesenfeld (editors), Computer Aided Geometric Design , Academic Press, 1974. This
book contains papers presented at a conference at the University of Utah that initiatedmuch of modern computer

graphics. The article by P. Bézier is very readable.

2. G. Farin, Curves and surfaces for computer aided design , Academic Press, 1988. This is a pleasant book that
probably covers more about curves and surfaces than most readers of this book will want, but the first chapter is

an enjoyable account by P. Bézier on the origins of his development of the curves that bear his name. These curves
were actually discoveredmuch earlier (before computers were even a dream) by themathematiciansHermite and

Bernstein, but it was only the work of Bézier, who worked at the automobile maker Renault, and de Casteljau,

who worked at Citroen, that made these curves familiar to graphics specialists.

3. D. E. Knuth, METAFONT: the Program , AddisonWesley, 1986. Pages 123–131 explain extremely clearly the
author’s implementation of Bézier curves in his programMETAFONT. For the admittedly rare programmer who
wishes to build his own implementation (at the level of pixels), or for anyone who wants to see what attention to

detail in first class work really amounts to, this is the best resource available.

