
APPENDIX 5

Zooming

One of the greatest advantages of using PostScript for illustrations is that it is scalable—there are no artefacts

in the illustration that show up when it is examined closely. This is in opposition to digital photographs, for
example, when blowup will start to show pixels. This appendix will explain how to take advantage of this.

1. Zooming

I shall explain here a procedure called zoom which has the effect of zooming in at a point by a given scale. Thezoom:1

overall effect can be illustrated by these three figures, where the zoom factor is 2:

Ευχλειδ Ευχλειδ

Ευχλειδ

How can we do this? There are three arguments for this procedure. One is the scale factor c. If it’s greater than

one, the scale change is a magnification and we are zooming in. If it’s less than 1, we are zooming out, not in.

If it’s exactly 1, there is no scale change, the zoom will amount to a translation of the origin. Another argument
is a point (x, y) in the original figure. The last argument is the point (cx, cy) to which (x, y) is to be relocated.

If we want to locate (x, y) at the centre of a page, for example, and if the current coordinate system is the page
coordinate system. then (cx, cy) = (306, 396). But if the origin of the current coordinate system is already at the

centre of the page it is (0, 0).

I call c the zoom factor, (x, y) the focus of the zoom, (cx, cy) its centre.

It is more or less clear that what we want is a succession of translation and scales, but in what order? And which

ones? The simplest way to decide is to portray geometrically what has to be done:

focus

origin

centre

focus

origin

centre

focus

origin

centre

focus

origin

centre



Appendix 5. Zooming 2

This leads to the following code

cx cy translate

s dup scale

x neg y neg translate

which is to be inserted before the original drawing commands.

If you want to rotate the figure with the focus as the pivot, then add the correct line as here:

cx cy translate

20 rotate

s dup scale

x neg y neg translate

focus

origin

centre

2. An explicit procedure

Call the following procedure before drawing.

% On the stack when called are

% [cx cy] [x y] s: the place that is now (x, y) is located at [cx cy]

% and lengths scaled by s

/zoom { 3 dict begin

/s exch def

aload pop

/y exch def

/x exch def

aload pop

translate

s dup scale

x neg y neg translate

currentlinewidth s div setlinewidth

end } def

3. Playing around

Try this:

(zoom.inc) run

/draw {

gsave

1 0 0 setrgbcolor

newpath

x y moveto

-100 0 rlineto



Appendix 5. Zooming 3

200 0 rlineto

x y moveto

0 -100 rlineto

0 200 rlineto

stroke

grestore

x y moveto

(Euclid) show

} def

/Helvetica-Bold findfont

25 scalefont

setfont

/s 1 def

/x 100 def

/y 100 def

{ % loop

gsave

[x y] [x y] s zoom

draw

grestore

/s s 1.1 mul def

showpage

} loop

How would you get the text to rotate around the focus as the loop proceeds?

4. Code

See zoom.inc. There is a variant in there of the procedure zoom, called Zoom. The third argument for this
procedure is an array of four numbers, specifying a linear transformation to be applied at the focus of the zoom.

Used with [s 0 0 s], for example, it is equivalent to a zoom with scale factor s.


