
CHAPTER 5

Drawing polygons:

loops and arrays

We begin by learning how to draw regular polygons, and then look at arbitrary polygons. Both will use loops,

and the second will require learning about arrays.

There are several kinds of loop constructs in PostScript. Three are frequently used.

5.1. The repeat loop

The simplest loop is the repeat loop. It works very directly. The basic pattern is:

N {

...

} repeat

HereN is an integer. Next comes a procedure, followed by the command repeat. The effect is very simple: the
lines of the procedure are repeatedN times. Of course these lines can have side effects, so the overall complexity
of the loop might not be negligible.

One natural place to use a loop in PostScript is to draw a regularN ­sided polygon. This is a polygon that hasN
sides all of the same length, and which also possesses central symmetry around a single point. If you are drawing

a regular polygon by hand, the simplest thing to do is draw first a circle of the required size, mark N points
evenly around this circle, and then connect neighbors. Here we shall assume that the radius is to be 1, and that
the location of theN points is fixed by assuming one of them to be (1, 0).

(cos 72◦, sin 72◦)

(1, 0)

(cos 144◦, sin 144◦)

If we set θ = 360/N , then the other points on the circle will be (cos θ, sin θ), (cos 2θ, sin 2θ), etc. To draw the
regular polygon, we first move to (1, 0) and then add the lines from one vertex to the next. At the n­th stage we
must add a line from (cos(n−1)θ, sin(n−1)θ) to (cos nθ, sin nθ). How can wemake this into a repetitive action?

Chapter 5. Drawing polygons: loops and arrays 2

By using a variable to store the current angle, and incrementing it by 360/N in each repeat. Here is a procedure
that will do the job:

% At entrance the number of sides is on the stack

% The effect is to build a regular polygon of N sides

/make-regular-polygon { 4 dict begin

/N exch def

/A 360 N div def

1 0 moveto

N {

A cos A sin lineto

/A A 360 N div add def

} repeat

closepath

end } def

In the first iteration, A = 360/N , in the second A = 720/N , etc.

Exercise 5.1. Modify this procedure to have two arguments, the first equal to the radius of the polygon. Why is
not worthwhile to add the center and the location of the initial point as arguments?

5.2. The for loop

Repeat loops are the simplest in PostScript. Slightly more complicated is the for loop. To show how it works,

here is an example of drawing a regular pentagon:

1 0 moveto

1 1 5 {

/i exch def

i 72 mul cos i 72 mul sin lineto

} for

closepath

The for loop has one slightly tricky feature which requires the line /i exch def. The structure of the for loop
is this:

s h N {

...

} for

This loop involves a ‘hidden’ and nameless variable which starts with a value of s, increments itself by h each
time the procedure is performed, and stops after doing the last loop where this variable is equal to or less than

N . This hidden (or implicit) variable is put on the stack just before each repetition of the procedure. The line /i
exch def behaves just like the similar lines in procedures—it takes that hidden variable off the stack and assigns
it to the named variable i. It is not necessary to do this, but you must do something with that number on the
stack, because otherwise it will just accumulate there, causing eventual if not immediate trouble. If you don’t
need to use the loop variable, but just want to get rid of it, use the command pop, which just removes the top

item from the stack.

Incidentally, it is safer to use only integer variables in the initial part of a for loop, because otherwise rounding

errors may cause a last loop to be missed, or an extra one to be done.

Exercise 5.2. Make up a procedure polygon just like the one in the first section, but using a for loop instead of
a repeat loop.

Chapter 5. Drawing polygons: loops and arrays 3

Exercise 5.3. Write a complete PostScript program which makes your own graph paper. There should be light
gray lines 1mm. apart, heavier gray ones 1 cm apart, and the axes done in black. The center of the axes should
be at the center of the page. Fill as much of the page as you can with the grid.

5.3. The loop loop

The third kind of loop is the most complicated, but also the most versatile. It operates somewhat like a while
loop in other languages, but with a slight extra complication.

1 0 moveto

/A 72 def

{ A cos A sin lineto

/A A 72 add def

A 360 gt { exit } if

} loop

closepath

The complication is that you must test a condition in the loop, and explicitly force an exit if it is not satisfied.
Otherwise youwill loop forever. If you put in your condition at the beginning of the loop, you have the equivalent

of a while loop, while if at the end a do . . . while loop. Thus, the commands loop and exit should almost

always be used together. Exits can be put into any loop in order to break out of it under exceptional conditions.

5.4. Graphing functions

Function graphs or parametrized curves can de done easily with simple loops, although we shall see in the next

chapter a more sophisticated way to do them. Here would be sample code to draw a graph of y = x2 from−1 to
1:

/N 100 def

/x -1 def

/dx 2 N div def

/f {

dup mul

} def

newpath

x dup f moveto

N {

/x x dx add def

x dup f lineto

} repeat

stroke

5.5. General polygons

Polygons don’t have to be regular. In general a polygon is essentially a sequence of points P0, P1, . . . , Pn−1

called its vertices . The edges of the polygon are the line segments connecting the successive vertices. We shall
impose a convention here: a point will be an array of two numbers [x y] and a polygon will be an array of points
[P0 P2 . . . Pn−1]. We now want to define a procedure which has an array like this as a single argument, and
builds the polygon from that array by making line segments along its edges.

There are a few things you have to know about arrays in PostScript in order to make this work (and they are just

about all you have to know):

Chapter 5. Drawing polygons: loops and arrays 4

(1) The numbering of items in an array starts at 0;
(2) if a is an array then a length returns the number of items in the array;

(3) if a is an array then a i get puts the i­th item on the stack;
(4) you create an array on the stack by entering [, a few items, then];

% argument: array of points

% builds the corresponding polygon

/make-polygon { 3 dict begin

/a exch def

/n a length def

n 1 gt {

a 0 get 0 get

a 0 get 1 get

moveto

1 1 n 1 sub {

/i exch def

a i get 0 get

a i get 1 get

lineto

} for

} if

end } def

This procedure starts out by defining the local variable a to be the array on the stack which is its argument. Then
it defines n to be the number of items in a. If n ≤ 1 there is nothing to be done at all. If n > 1, we move to the
first point in the array, and then draw n − 1 line segments. Since there are n points in the array, we draw n − 1
segments, and the last point is Pn−1. Note also that since the i­th item in the array is a point Pi, which is itself an

array of two items, we must ‘get’ its elements to make a line. If P = [x y] then P 0 get P 1 get puts x y on the
stack.

There is another way to unload the items in an array onto the stack: the sequence P aload puts all the entries of
P onto the stack, together with the array P itself at the top. The sequence P aload pop thus puts all the entries

on the stack, in order. This is simpler and more efficient than getting the items one by one.

Note also that if we want a closed polygon, we must add closepath outside the procedure. There is no

requirement that the first and last points of the polygon be the same.

There is one more important thing to know about arrays. Normally, you build one by entering any sequence of

items in between square brackets [and], separated by space, possibly on separate lines. An array can be any
sequence of items, not necessarily all of the same kind. The following is a legitimate use of make-polygon to
draw a pentagon:

newpath

[

[1 0]

[72 cos 72 sin]

[144 cos 144 sin]

[216 cos 216 sin]

[288 cos 288 sin]

]

make-polygon

closepath

stroke

Chapter 5. Drawing polygons: loops and arrays 5

Exercise 5.4. Use loops and make-polygon to draw the American flag in color, say 3 ′′ high and 5′′ inches wide.
(The stars—there are 50 of them—are the interesting part.)

Exercise 5.5. Another useful pair of commands involving arrays are array and put. The sequence n array

puts on the stack an array of length n. What is in it? A sequence of null objects, that is to say essentially faceless
entities. Of course the array will be of no use until null objects are replaced by proper data. The way to do this is
with the put command. The sequence A n x put sets A[n] = x.

(1) Construct a procedure reversed that replaces an array by the array that lists the same objects in the opposite
order, without changing the original array. (2) Then use put and careful stack manipulations to do this without
using any variables in your procedure. Thus

[0 1 2 3] reversed

should return [3 2 1 0].

5.6. Clipping polygons

In this section, now that we are equipped with loops and arrays, we shall take up a slight generalization of the

problem we began with in the last chapter. We shall also see a new kind of loop.

Here is the new problem:

• We are given a closed planar polygonal path γ, together with a lineAx + By + C = 0. We want to replace γ
by its intersection with the half plane f(x, y) = Ax + By + C ≤ 0.

We are going to see here a simple but elegant way of solving these problems called the Hodgman-Sutherland
algorithm after its inventors. Wemay as well assume the path to be oriented. The solution to the problem reduces

to one basic idea: if the path γ exits the half plane at a point P and next crosses back at Q, we want to replace
that part of γ between P and Q by the straight line PQ.

Chapter 5. Drawing polygons: loops and arrays 6

P

Q

We want to design a procedure, which I’ll call hodgman-sutherland, that has the closed polygon γ and the line
Ax + By + C = 0 as arguments and returns on the stack a new polygon obtained from γ by cutting off the part
in the regionAx + By + C > 0. The polygon γ will be represented by the array of its vertices and the line by the
array ℓ = (A, B, C). Let

〈ℓ, P 〉 = Ax + By + C

if P = (x, y).

The procedure looks in turn at each edge of the polygon, in the order determined by the array. It starts with the

edge Pn−1, P0, a convenient trick in such situations. As we proceed, we are going to build up the replacement
polygonby adding points to it. Supposewe are looking at an edgePQ. Whatwedowill dependon circumstances.
Roughly put:

(1) If 〈ℓ, P 〉 ≤ 0 and 〈ℓ, Q〉 ≤ 0 (both P and Q inside the half plane determined by ℓ) we add Q to the new
polygon;

(2) if 〈ℓ, P 〉 < 0 but 〈ℓ, Q〉 > 0 (P inside, Q outside) we add the intersection PQ ∩ ℓ of the segment PQ with
ℓ, which is

〈ℓ, Q〉P − 〈ℓ, P 〉Q

〈ℓ, Q〉 − 〈ℓ, P 〉
,

to the new polygon;

(3) if 〈ℓ, P 〉 = 0 but 〈ℓ, Q〉 > 0 we do nothing;
(4) if 〈ℓ, P 〉 > 0 but 〈ℓ, Q〉 ≤ 0 (P outside, Q inside) then we add both PQ ∩ ℓ and Q, unless they are the
same, in which case we just add one;

(5) if both P and Q are outside we do nothing.

This process is very much like that performed in Chapter 4 to find the intersection of a line and a rectangle, and

one convention is certainly the same—an edge does not really contain its starting point.

In certain singular cases, one of the vertices lies on ℓ and no new point is calculated.

One peculiar aspect of the process is that if the line crosses and recrosses several times, it still returns a single
polygon.

In writing the procedure to do this, we are going to use the forall loop. It is used like this:

a {

...

} forall

where a is an array. The procedure { ... } is called once for each element of the array a, with that element on
top of the stack. It acts much like the for loop, and in fact some for loops can be simulated with an equivalent
forall loop by putting an appropriate array on the stack.

Chapter 5. Drawing polygons: loops and arrays 7

In the program excerpt below there are a few things to notice in addition to the use of forall. One is that for
efficiency’s sake the way in which a local dictionary is used is a bit different from previously. I have defined a

procedure evaluatewhich calculates Ax + By + C given [A B C] and [x y]. If I were following the pattern

recommended earlier, this procedure would set up its own local dictionary on each call to it. But setting up a
dictionary is inefficient, and evaluate is called several times in the main procedure here. So I use no dictionary,

but rely entirely on stack operations. The new stack operation used here is roll. It has two arguments n and i,
shifting the top n elements on the stack cyclically up by i—i.e. it rolls the top n elements of the stack. If the stack
is currently

x4 x3 x2 x1 x0 (bottom to top)

then the sequence 5 2 roll changes it to
x1 x0 x4 x3 x2 .

% x y [A B C] => Ax + By + C

/evaluate { % x y [A B C]

aload pop % x y A B C

5 1 roll % C x y A B

3 2 roll % C x A B y

mul % C x A By

3 1 roll % C By x A

mul % C By Ax

add add % Ax+By+C

} def

Another thing to notice is that the data we are given are the vertices of the polygon, but what we really want to
do is look at its edges, or pairs of successive vertices. So we use two variables P andQ, and start with P = Pn−1.

In looping through P0, P1, . . .we are therefore looping through edges Pn−1P0, P0P1, . . .

% arguments: polygon [A B C]

% returns: closure of polygon truncated to Ax+By+C <= 0

/hodgman-sutherland { 4 dict begin

/f exch def

/p exch def

/n p length def

% P = p[n-1] to start

/P p n 1 sub get def

/d P length 1 sub def

/fP P aload pop f evaluate def

[

p {

/Q exch def

/fQ Q aload pop f evaluate def

fP 0 le {

fQ 0 le {

% P <= 0, Q <= 0: add Q

Q

}{

% P <= 0, Q > 0

fP 0 lt {

% if P < 0, add intersection

/QP fQ fP sub def

[

fQ P 0 get mul fP Q 0 get mul sub QP div

Chapter 5. Drawing polygons: loops and arrays 8

fQ P 1 get mul fP Q 1 get mul sub QP div

]

} if

} ifelse

}{

% P > 0

fQ 0 le {

% P > 0, Q <= 0: if fQ < 0, add intersection;

% add Q in any case

fQ 0 lt {

/QP fQ fP sub def

[

fQ P 0 get mul fP Q 0 get mul sub QP div

fQ P 1 get mul fP Q 1 get mul sub QP div

]

} if

Q

} if

% else P > 0, Q > 0: do nothing

} ifelse

/P Q def

/fP fQ def

} forall

]

end } def

Exercise 5.6. If a path goes exactly to a line and then retreats, the code above will include in the new path just
the single point of contact. Redesign the procedure so as to put two copies of that point in the new path. It is
often useful to have a path cross a line in an even number of points.

5.7. Code

There is a sample function graph in function-graph.ps, and code for polygon clipping in dimensions three as

well as two in hodgman-sutherland.inc.

