CHAPTER XI

NORM RESIDUE SYMBOL FOR KUMMER EXTENSIONS

Throughout this chapter, \(p \) will denote a rational prime number; \(\wp \) will denote a prime of \(k \), and \(\wp' \) will denote a prime of an extension \(K \) of \(k \). Let \(m \) be a positive integer and let \(k \) contain the \(m \)-th roots of unity. The general \(m \)-power reciprocity law for elements in \(k \) has been found to be

\[
\left(\frac{\alpha}{\beta} \right)_m \left(\frac{\beta}{\alpha} \right)_m^{-1} = \prod_{\wp \in E} \left(\frac{\alpha, \beta}{\wp} \right)_m
\]

where \(E \) contains all primes of \(k \) dividing \(m \) and all infinite primes, and elements \(\alpha \) and \(\beta \) of \(k \) are relatively prime to each other and to \(m \). Our main objective will be to compute the symbol \(\left(\frac{\alpha, \beta}{\wp} \right)_p \) for odd primes \(p \) in the case \(k = \mathbb{Q}(\zeta) \) where \(\zeta \) is a primitive \(p \)-th root of unity, obtaining the \(p \)-th power reciprocity law in the process.

Lemma 11.1. Suppose that \(k \) contains the \(m \)-th roots of unity and \(\wp \) is an infinite prime of \(k \). Non-trivial norm residue symbols occur only if \(m = 2 \) and \(\wp \) is real, in which case we have

\[
\left(\frac{\alpha, \beta}{\wp} \right)_m = \begin{cases}
1 & \text{if } \alpha > 0 \text{ or } \beta > 0, \\
-1 & \text{if } \alpha < 0 \text{ and } \beta < 0.
\end{cases}
\]

Proof. If \(m > 2 \) then all infinite primes of \(k \) are complex because \(k \) contains the \(m \)-th roots of unity.

Norm residue symbol for composite powers.

Lemma 11.2. Suppose that \(k \) contains the \(mn \)-th roots of unity, \(\wp \) is a finite prime of \(k \) and \(\alpha \) and \(\beta \) are elements of \(k^*_\wp \). Let \(m \) and \(n \) be relatively prime. If \(ma + nb = 1 \) then

\[
\left(\frac{\alpha, \beta}{\wp} \right)_{mn} = \left(\frac{\alpha, \beta}{\wp} \right)_m^b \left(\frac{\alpha}{\wp} \right)_n^a
\]

(11.1)
Proof. We can choose β_0 in k^* sufficiently close to β so that $\beta_0 \simeq_{\text{mn}} \beta$. Then β may be replaced by β_0 in all norm residue symbol expressions, so we may as well suppose that β is in k^*. For an integer s dividing mn, let σ_s be the norm residue symbol automorphism.

$$\sigma_s = \left(\frac{\alpha, k(\sqrt[\beta]{\beta})/k}{\varphi} \right)$$

We have $1/mn = a/n + b/m$, so $m^{\sqrt[\beta]{\beta}} = (\sqrt[\beta]{\beta})^b (\sqrt[\beta]{\beta})^a$. Since σ_m and σ_n are restrictions of σ_{mn} to their respective subfields, then

$$\sigma_{mn} \left(m^{\sqrt[\beta]{\beta}} \right) = \sigma_{mn} \left((\sqrt[\beta]{\beta})^b (\sqrt[\beta]{\beta})^a \right) = \left(\sigma_m (\sqrt[\beta]{\beta}) \right)^b \left(\sigma_n (\sqrt[\beta]{\beta}) \right)^a.$$

Therefore

$$\frac{\sigma_{mn} \left(m^{\sqrt[\beta]{\beta}} \right)}{m^{\sqrt[\beta]{\beta}}} = \left(\frac{\sigma_m (\sqrt[\beta]{\beta})}{\sqrt[\beta]{\beta}} \right)^b \left(\frac{\sigma_n (\sqrt[\beta]{\beta})}{\sqrt[\beta]{\beta}} \right)^a,$$

so

$$\left(\frac{\alpha, \beta}{\varphi} \right)_{mn} = \left(\frac{\alpha, \beta}{\varphi} \right)_m^b \left(\frac{\alpha, \beta}{\varphi} \right)_n^a.$$

Lemma 11.3. k_φ contains the $(N\varphi - 1)$-th roots of unity.

Proof. Let ζ be a primitive $(N\varphi - 1)$-th root of unity. Then $k_\varphi(\zeta)/k_\varphi$ is unramified since φ does not divide $N\varphi - 1$. Let φ' be the prime of $k_\varphi(\zeta)$. In the map $O_{\varphi'} \to O_{\varphi'}/\varphi'$, element ζ maps to an element of $O_{\varphi'}/\varphi$ since $O_{\varphi'}/\varphi$ is the splitting field of $x^{N\varphi - 1} - 1$. This shows that $O_{\varphi'}/\varphi' = O_{\varphi}/\varphi$. Therefore $f = 1$, so $[k_\varphi(\zeta) : k_\varphi] = ef = 1$, and we have $k_\varphi(\zeta) = k_\varphi$.

Lemma 11.4. Let V be the group of $(N\varphi - 1)$-th roots of unity in k_φ. Then the image of V in O_{φ}/φ is all of $(O_{\varphi}/\varphi)^*$.

Proof. If v is in V and $v \neq 1$, then v is a root of $x^{N\varphi - 2} + \cdots + x + x = 0$. If $v = 1 \mod \varphi$ then we would have $N\varphi - 1 = 0 \mod \varphi$, which is impossible. Therefore the kernel of $V \to (O_{\varphi}/\varphi)^*$ is trivial, so the map is an isomorphism since both V and $(O_{\varphi}/\varphi)^*$ have $(N\varphi - 1)$ elements.

Lemma 11.5. Let π be an element of k_φ^* such that $\varphi = (\pi)$. For fixed π, every element α of k_φ^* has a unique representation as

$$\alpha = \pi^{a} v u \quad \text{where } v \in V \text{ and } u \in W_\varphi(1).$$

Therefore k_φ^* is a direct product $\langle \pi \rangle V W_\varphi(1)$.

Proof. Exponent a is determined by $a = \ord_\varphi(\alpha)$. Put $\alpha' = \alpha/\pi^a$. Then α' is in u_φ. By lemma 11.4, there is a unique element v in V so that $\alpha' = v(\mod \varphi)$. Then $u = \alpha'/v$ is in $W_\varphi(1)$. Since α' and v are uniquely determined then so is u.
Lemma 11.6. If n is relatively prime to $N\varphi - 1$ then $V = V^n$ and the map $x \to x^n$ is an isomorphism of $(\mathcal{O}_\varphi/\varphi)^*$.

Proof. Let a and b be integers such that $na + (N\varphi - 1)b = 1$. Then $y \to y^a$ is inverse to $x \to x^n$, and we have $V \supset V^n \supset V^{na} = V$, so $V = V^n$.

The case of powers relatively prime to φ. Suppose that $n = p^r$ where (p) is the rational prime divisible by φ and m is relatively prime to p. Lemma 11.2 shows how computation of the norm residue symbol for mn-th powers is reduced to separate computations for m-th powers and p^r-th powers. Lemma 11.7 gives an explicit formula for the former case.

Lemma 11.7. Let π be an element of k_φ^* such that $\varphi = (\pi)$. Suppose that m is relatively prime to φ. If $\alpha = \pi^a v u$ and $\beta = \pi^b v' u'$ as in lemma 11.5, then

$$
\left(\frac{\alpha, \beta}{\varphi} \right)_m = \left(\frac{-1}{\varphi} \right)_m^{ab} (v)^{-b} \frac{N\varphi - 1}{m} (v')^a \frac{N\varphi - 1}{m}.
$$

Proof. Since φ does not divide m then we can apply lemma 10.9.

$$
\left(\frac{\alpha, \beta}{\varphi} \right)_m = \left(\frac{-1}{\varphi} \right)_m^{ab} \left(\frac{\beta^a/\alpha^b}{\varphi} \right)_m = \left(\frac{-1}{\varphi} \right)_m^{ab} \left(\frac{(v'u')^a / (vu)^b}{\varphi} \right)_m.
$$

We have $u = 1 \pmod{\varphi}$ and $u' = 1 \pmod{\varphi}$, so both $\left(\frac{u}{\varphi} \right)_m$ and $\left(\frac{u'}{\varphi} \right)_m$ are trivial. $\left(\frac{v}{\varphi} \right)_m$ is the unique $(N\varphi - 1)$-th root of unity such that $\left(\frac{v}{\varphi} \right)_m = v \frac{N\varphi - 1}{m} \pmod{\varphi}$. But v is an $(N\varphi - 1)$-th root of unity, so $\left(\frac{v}{\varphi} \right)_m = (v)^{\frac{N\varphi - 1}{m}}$, and likewise $\left(\frac{v'}{\varphi} \right)_m = (v')^{\frac{N\varphi - 1}{m}}$.

The case of p^r-th powers where φ divides (p). Take $n = p^r$ where φ divides (p). Then n is relatively prime to $N\varphi - 1$. Group V is cyclic of order $N\varphi - 1$, so $V^n = V$, and every element of V is a n-th power. Since every n-th power norm residue symbol involving an element v in V is trivial, we have

$$
(11.2) \quad \left(\frac{\alpha, \beta}{\varphi} \right)_n = \left(\frac{\pi^a v u, \pi^b v' u'}{\varphi} \right)_n = \left(\frac{\pi^a u, \pi^b u}{\varphi} \right)_n.
$$

To compute (11.2), it is only necessary to assume that k contains the n-th roots of unity.
Lemma 11.8. Suppose that \(\wp \) is a prime of \(k \) and \((p) \) is the rational prime that \(\wp \) divides. Let \(n = p^a \), and suppose that \(k \) contains the \(n \)-th roots of unity. Then \(W_\wp(1)/W_\wp(1)^n \) is the direct sum of \(d + 1 \) cyclic groups of order \(n \), where \(d = [k_\wp : Q_{(p)}] \).

Proof. Every element of \(W_\wp(1)/W_\wp(1)^n \) has order dividing \(n \), so the group is the direct product of cyclic subgroups each having order dividing \(n \). Let \(\alpha \) map to a generator of any one of these cyclic subgroups having order \(n' = p^b \). Then \(y \leq x \), and \(\alpha^{n'} \) is in \(W_\wp(1)^n \), so \(\alpha^{n'} = \beta^n \) for some element \(\beta \) in \(W_\wp(1) \). Suppose that \(y < x \). Then \(\alpha^{n'} = (\beta^{p^{x-y}})^p \), so \(\alpha = \beta^{p^{x-y}} \zeta' \), where \(\zeta' \) is a \(p^y \)-th root of unity. Since \(k \) contains the \(p^x \)-th roots of unity then \(\zeta' = \zeta^{p^{x-y}} \) where \(\zeta \) is some \(p^x \)-th root of unity, and we have \(\alpha = (\beta \zeta)^{p^{x-y}} \). But \(\alpha \) cannot be a \(p \)-th power, so it impossible to have \(y < x \). Therefore each cyclic subgroup in the direct product has order exactly \(p^x \). By lemma 11.5, \(u_\wp \) is a direct product \(VW_\wp(1) \). Since \(N_\wp - 1 \) and \(n = p^x \) are relatively prime then \(V^n = V \). We therefore have

\[
\frac{u_\wp}{u_\wp^n} = \frac{VW_\wp(1)}{VW_\wp(1)^n} = \frac{W_\wp(1)}{W_\wp(1)^n} = \frac{W_\wp(1)}{W_\wp(1)^n}.
\]

Since \([k_\wp : Q_{(p)}] = d \) and \(n = p^x \), we have \(|n|_\wp = \left| N_{k_\wp/Q_{(p)}} n \right|_p = |n|^d = n^{-d} \). By lemma 8.11, we have \([u_\wp : u_\wp^n] = n|n|^{-1} \), so

\[
[W_\wp(1) : W_\wp(1)^n] = [u_\wp : u_\wp^n] = n(n^d) = n^{d+1}.
\]

Therefore \(W_\wp(1)/W_\wp(1)^n \) must be the product of \(d + 1 \) cyclic groups of order \(n \).

Definition. An element \(\alpha \) in \(W_\wp(1) \) is \(n \)-primary if \(k_\wp(\sqrt[\wp]{\alpha})/k_\wp \) is unramified.

Lemma 11.9. With the hypothesis of lemma 11.8, the image in \(W_\wp(1)/W_\wp(1)^n \) of the set of \(n \)-primary elements is a cyclic group of order \(n \).

Proof. Since \(k_\wp^n \) is a direct product \(\langle \pi \rangle VW_\wp(1) \) and \(V = V^n \) we have

\[
\frac{k_\wp^n}{(k_\wp^n)^n} = \frac{\langle \pi \rangle VW_\wp(1)}{\langle \pi^n \rangle VW_\wp(1)^n} = \frac{\langle \pi \rangle}{\langle \pi^n \rangle} \times \frac{W_\wp(1)}{W_\wp(1)^n}.
\]

By lemma 11.8, \(k_\wp^n/(k_\wp^n)^n \) is the direct sum of \(d + 2 \) cyclic groups of order \(n \), where \(d = [k_\wp : Q_{(p)}] \). Let \(\beta_1, \ldots, \beta_{d+2} \) be a set of generators for \(k_\wp/(k_\wp^n)^n \), and the \(\beta_i \) may be chosen to be elements of \(k^* \). The \(\beta_i \) are independent modulo \(n \), so by lemma 8.5 the extension \(k_\wp(\sqrt[\wp]{\beta_1}, \ldots, \sqrt[\wp]{\beta_{d+2}}) \) of \(k_\wp \) has degree \(n^{d+2} \), with Galois
group isomorphic to the direct sum of the $d + 2$ Galois groups $G(k_\wp(\sqrt[d] x) : k_\wp)$, where $1 \leq i \leq d + 2$. Every extension of the form $k_\wp(\sqrt[d] x)$ where β is in k_\wp^* is a subfield of $k_\wp(\sqrt[x]{\beta}, \ldots, \sqrt[x]{\beta_{d+2}})$. Put $K = k(\sqrt[x]1, \ldots, \sqrt[x]{\beta_{d+2}})$. The kernel of $\alpha \to (\alpha_1/k_\wp) = n^{d+2}$ in K and contains $(k_\wp^*)^n$. Since $[k_\wp^* : (k_\wp^*)^n] = n^{d+2}$, then the kernel is exactly $(k_\wp^*)^n$.

Let H be the image in $G = G(k_\wp(\sqrt[x]1, \ldots, \sqrt[x]{\beta_{d+2}}) : k_\wp)$ of the units u_\wp of k_\wp. An element β of k_\wp^* is in the fixed field of H if and only if $(\alpha_1/k_\wp)_n = \sqrt[x]1$ for every α in u_\wp, which is if and only if $\sqrt[x]1$ is in $k_\wp(\sqrt[x]1)$, so $\sqrt[x]1$ is the smallest positive value of x such that $\gamma_2 \simeq 1$. Let $\gamma_2 = c/nq + r$ and $0 \leq r < n$. Put $\gamma_1 = \gamma_2 / \pi^n$. Then $\gamma_2 = \gamma_1$, so the fixed field of H is $k_\wp(\sqrt[x]1)$, and $(\gamma_1) = \varphi^r$. The map $\alpha \to (\alpha_1/k_\wp)_n$ is a homomorphism $k_\wp^* \to G(k_\wp(\sqrt[x]1) : k_\wp)$. The kernel has index n in W_\wp and contains $u_\wp(k_\wp^*)^n$, so the kernel is exactly $u_\wp(k_\wp^*)^n$.

Since -1 is in u_\wp, we have

$$(\gamma_1, \gamma_1) = (\gamma_2, 1) = (\gamma_2, \gamma_1) = (1, 1) = 1.$$
Lemma 11.10. With the hypothesis of lemma 11.8, choose a fixed element \(\pi \) so that \(\varphi = (\pi) \). Put

\[
W_\pi = \left\{ \alpha \in W_\varphi(1) \mid \left(\frac{\pi, \alpha}{\varphi} \right)_n = 1 \right\}.
\]

Let \(\gamma_0 \) in \(W_\varphi(1) \) be a generator of group the \(n \)-primary elements modulo \(W_\varphi(1)^n \) and let \(\gamma_0 \) be the coset \(\gamma_0 W_\varphi(1)^n \). Then \(W_\varphi(1)/W_\varphi(1)^n \) is a direct product

\[
\frac{W_\varphi(1)}{W_\varphi(1)^n} = \frac{W_\pi}{W_\pi(1)^n} \times \langle \gamma_0 \rangle.
\]

Proof. Suppose that \(\alpha \) is \(n \)-primary and in \(W_\pi \). Then \(\left(\frac{\beta, \alpha}{\varphi} \right)_n = 1 \) for every element \(\beta \) of \(k^*_\varphi \), and in particular for a set of generators \(\beta_1, \ldots, \beta_{d+2} \) generators of \(k^*_\varphi/k^*_\varphi \). Therefore for \(1 \leq i \leq d+2 \), the norm residue symbols \(\left(\frac{\alpha, k_\varphi(\sqrt{\beta_i})/k_\varphi}{\varphi} \right)_n \) are trivial, so \(\left(\frac{\alpha, k_\varphi(\sqrt{\beta_1}, \ldots, \sqrt{\beta_{d+2}})/k_\varphi}{\varphi} \right)_n \) is trivial by lemma 8.5, and therefore \(\alpha \) is in \((k^*_\varphi)^n \cap W_\varphi(1) \). Then \(\alpha = v^n w^n \) with \(v \) in \(V_\varphi \) and \(u \) in \(W_\varphi(1) \). We have \(v^n = 1 \mod \varphi \), so \(v = 1 \), and therefore \(\alpha \) is in \(W_\varphi(1)^n \). We have shown that \(W_\varphi(1)/W_\varphi(1)^n \cap \langle \gamma_0 \rangle \) is a trivial group.

Now suppose that \(\alpha \) is an arbitrary element of \(W_\varphi(1) \). It remains to show that \(W_\pi \) and \(\gamma_0 \) generate \(W_\varphi(1) \) modulo \(W_\varphi(1)^n \). Since \(k_\varphi(\sqrt{\gamma_0}) \) has degree \(n \) over \(k_\varphi \), then there exists an element \(\beta \) in \(k^*_\varphi \) such that \(\left(\frac{\beta, \gamma_0}{\varphi} \right)_n \) is a primitive \(n \)-th root of unity. Let \(\beta = \pi^b v \). Then \(\left(\frac{\beta, \gamma_0}{\varphi} \right)_n = \left(\frac{\pi^b, \gamma_0}{\varphi} \right)_n \), so \(\pi \gamma_0 \) must be a primitive \(n \)-th root of unity. There exists an \(a \) so that \(\left(\frac{\pi, \alpha}{\varphi} \right)_n = \left(\frac{\pi, \gamma_0}{\varphi} \right)_n \). We have \(\alpha = (\alpha \gamma_0^{-a}) \gamma_0^a \). Then \(\alpha \gamma_0^{-a} \) is in \(W_\pi \) because \(\left(\frac{\pi, \alpha \gamma_0^{-a}}{\varphi} \right)_n = \left(\frac{\pi, \alpha}{\varphi} \right)_n \left(\frac{\pi, \gamma_0}{\varphi} \right)_n^{-a} = 1 \). This completes the proof of the lemma.

The computation of the norm residue symbol for \(p^2 \)-th powers has been reduced to the following. An element \(\alpha \) of \(k^*_\varphi \) may be expressed as \(x = \pi^a v w \) where \(v \) is in \(V_\varphi \) and \(w \) is in \(W_\varphi(1) \). Let \(w \simeq_n u_0 \gamma_0^{a'} \) with \(u \) in \(W_\pi \). Likewise, let \(\beta \) in \(k^*_\varphi \) be expressed as \(\beta = \pi^b v' w' \) where \(v' \) is in \(V_\varphi \) and \(w' \simeq_n u'_0 \gamma_0^{b'} \) with \(u' \) in \(W_\pi \). Then

\[
\left(\frac{x, y}{\varphi} \right)_n = \left(\frac{\pi^a v u_0 \gamma_0^{a'}, \pi^b v' u'_0 \gamma_0^{b'}}{\varphi} \right)_n = \left(\frac{\pi, \pi}{\varphi} \right)_n \left(\frac{\pi, \gamma_0}{\varphi} \right)_n \left(\frac{u, u'}{\varphi} \right)_n \left(\frac{\gamma_0, \pi}{\varphi} \right)_n \left(\frac{\beta a'}{\varphi} \right)_n.
\]
Therefore

\[\left(\frac{x, y}{\wp} \right)_n = \left(\frac{\pi, -1}{\wp} \right)_n^{ab} \left(\frac{\pi, \gamma_0}{\wp} \right)_n^{ab' - ba'} \left(\frac{u, u'}{\wp} \right)_n \]

The problems that remain are essentially two.

1. Find a generator \(\gamma_0 \) for the \(n \)-primary elements and calculate \(\left(\frac{\pi, \gamma_0}{\wp} \right)_n \).

2. Find a basis \(v_1, \ldots, v_d \) of \(W_\wp \mod W_\wp(1)^n \) and calculate \(\left(\frac{v_i, v_j}{\wp} \right)_n \).

The \(p \)-primary elements for odd primes. We specialize to the case \(n = p \) and \(p > 2 \). Let \(k = \mathbb{Q}(\zeta) \) where \(\zeta \) is a primitive \(p \)-th root of unity. Then \([k : \mathbb{Q}] = p - 1 \). The prime \((p) \) is completely ramified in \(k \); if \(\pi = 1 - \zeta \) then \((p) = \wp^{p-1} \) where \(\wp = (\pi) \). We have \([k_\wp : \mathbb{Q}(p)] = p - 1 \) with ramification index \(e = p - 1 \); since \(f = 1 \) then the rational integers \(0, 1, \ldots, p - 1 \) are a complete residue system for \(\mathfrak{o}_\wp / \wp \).

Lemma 11.11. \([W_\wp(1) : W_\wp(k + 1)] = p^k \)

Proof. Every element of \(W_\wp(1) \) may be uniquely represented modulo \(\pi^{k+1} \) by \(1 + a_1\pi + a_2\pi^2 + \cdots + a_k\pi^k \) with coefficients \(a_i \) belonging to a complete residue system for \(\mathfrak{o}_\wp / \wp \). There are \(p^k \) choices for the coefficients \(a_1, \ldots, a_k \).

Lemma 11.12. \(W_\wp(1)^p = W_\wp(p + 1) \)

Proof. Let \(b = \text{ord}_\wp(p) \). By lemma 4.13, every element \(x \) of \(k_\wp \) such that \(\text{ord}_\wp(x) > b/(p - 1) \) + \(\text{ord}_\wp(p) \) is the \(p \)-th power of some element \(y \) in \(k_\wp \) such that \(\text{ord}_\wp(y) > b/(p - 1) \). Since \(\text{ord}_\wp(p) = p - 1 \), then every \(x \) such that \(\text{ord}_\wp(x) > p \) is the \(p \)-th power of some \(y \) such that \(\text{ord}_\wp(y) > 1 \), that is \(W_\wp(p + 1) \subset W_\wp(2)^p \). Let \(V_\wp = \langle \zeta \rangle \) be the group of \(p \)-power roots of unity. Since \(\zeta = 1(\mod \wp) \) then

\[W_\wp(p + 1) \subset W_\wp(2)^p \subset (W_\wp(2)V_\wp)^p \subset W_\wp(1)^p \subset W_\wp(1) \]

By lemma 11.8 and lemma 11.11, subgroups \(W_\wp(p + 1) \) and \(W_\wp(1)^p \) both have index \(p^p \) in \(W_\wp(1) \), so the two must coincide.

Lemma 11.13. If element \(\alpha \) of \(k_\wp \) is in \(W_\wp(p) \) then \(\frac{\sqrt[p]{\pi - 1}}{\pi} \) is integral over \(\mathfrak{o}_\wp \).

Proof. The element in question is a root of polynomial \((p\pi)^{-1}((\pi x + 1)^p - \alpha) \) having coefficients in \(k_\wp \), and

\[\frac{(\pi x + 1)^p - \alpha}{p\pi} = \frac{p\pi}{p\pi} x^p + \frac{(p)^p}{p\pi} x^{p-1} + \cdots + \frac{(p-1)^p}{p\pi} \pi x + \frac{1 - \alpha}{p\pi} \]

The leading coefficient is a unit and the other coefficients except possibly the constant term are elements of \(\mathfrak{o}_\wp \). If \(\alpha = 1(\mod \wp^p) \) then the constant term is also in \(\mathfrak{o}_\wp \).
Lemma 11.14. Let \(\alpha \) of \(k_{\wp} \) be in \(W_{\wp}(1) \). Then \(\alpha \) is \(p \)-primary if and only if \(\alpha \) is in \(W_{\wp}(p) \).

Proof. Let \(P \) be the group of \(p \)-primary elements in \(W_{\wp}(1) \). Then we have \([W_{\wp}(1) : W_{\wp}(1)^p] = p^p\) and \([P : W_{\wp}(1)^p] = p\) by lemma 11.8 and lemma 11.9, so \([W_{\wp}(1) : P] = p^{p-1}\). Also we have \([W_{\wp}(1) : W_{\wp}(p)] = p^p\) by lemma 11.11, so it will be enough to show that \(W_{\wp}(p) \) is contained in \(P \), i.e. \(k_{\wp}(\sqrt[p]{\alpha})/k_{\wp} \) is unramified if \(\alpha \equiv 1 \pmod{\wp} \). Let \(\tau \) be an automorphism in the inertial subgroup of \(G(k_{\wp}(\sqrt[p]{\alpha}) : k_{\wp}) \), and let \(\tau(\sqrt[p]{\alpha}) = \zeta'\sqrt[p]{\alpha} \) where \(\zeta' \) is a \(p \)-th root of unity. (We need to show that \(\zeta' \) must be 1.) Let \(\wp' \) be the prime of \(k_{\wp}(\sqrt[p]{\alpha}) \) dividing \(\wp \). Then \(\tau(\gamma) = \gamma \pmod{\wp'} \) for every \(\gamma \) that is integral over \(o_{\wp} \). The element \((\sqrt[p]{\alpha} - 1)/\pi\) is integral over \(o_{\wp} \) by lemma 11.13, so we have

\[
\frac{\zeta'\sqrt[p]{\alpha} - 1}{\pi} = \frac{\sqrt[p]{\alpha} - 1}{\pi} \pmod{\wp'}.
\]

Therefore

\[
\frac{(\zeta' - 1)\sqrt[p]{\alpha}}{\pi} = 0 \pmod{\wp'}.
\]

If \(\zeta' \neq 1 \) then \((\zeta' - 1)/\pi\) is a unit, but that is impossible since \(\sqrt[p]{\alpha} \) is also a unit. This shows that \(\zeta' = 1 \), the inertial group is trivial, and \(k_{\wp}(\sqrt[p]{\alpha})/k_{\wp} \) is unramified, which concludes the proof.

Lemma 11.15. With \(\pi = 1 - \zeta \) we have

\[
\zeta^i = 1 - i\pi \pmod{\wp^2} \quad \text{and} \quad \frac{\pi^{p-1}}{p} = -1 \pmod{\wp}.
\]

Proof. Since \(\zeta \equiv 1 \pmod{\wp} \) then, for \(1 \leq i < p \), we have

\[
\frac{1 - \zeta^i}{1 - \zeta} = 1 + \zeta + \cdots + \zeta^{i-1} = i \pmod{\wp},
\]

so \(1 - \zeta^i = i\pi \pmod{\wp^2} \), which establishes the first conclusion. For the second, substitute \(x = 1 \) in \(x^{p-1} + \cdots + x + 1 = (x - \zeta)(x - \zeta^2) \cdots (x - \zeta^{p-1}) \) to obtain

(11.3)

\[
p = (1 - \zeta)(1 - \zeta^2) \cdots (1 - \zeta^{p-1}).
\]

Therefore

\[
\frac{\pi^{p-1}}{p} = \frac{(1 - \zeta)(1 - \zeta) \cdots (1 - \zeta)}{(1 - \zeta)(1 - \zeta^2) \cdots (1 - \zeta^{p-1})} = \frac{1}{(p-1)!} \pmod{\wp}.
\]

Since \((p-1)! = -1 \pmod{p}\) then the second conclusion follows.
Lemma 11.16. If α in k_φ is a p-primary element, there is a rational integer a such that $0 \leq a < p$ and $\alpha = 1 + ap\pi \pmod{\varphi^{p+1}}$. With $\pi = 1 - \zeta$, we have

\[
\left(\frac{\pi, \alpha}{\varphi} \right)_p = \zeta^a.
\]

Proof. Let α be p-primary. There is an integer a so that $\alpha = 1 + ap\pi$ modulo φ^{p+1} since the integers $0, 1, \ldots, p - 1$ are a complete residue system for $\mathcal{O}_\varphi/\varphi$. We can choose an element α' in k that is sufficiently close to α so that $\alpha' \simeq_p \alpha$ and $\alpha' = \alpha \pmod{\varphi^{p+1}}$, so we may assume that α is in k. In that case, put $K = k(\sqrt[p]{\alpha})$ and let φ' be a prime of K dividing φ. If α is p-primary then φ is unramified in K so in the completion we have $\varphi' = \varphi \mathcal{O}_{\varphi'}$ and therefore $\varphi' = (\varphi)$. Put

\[
\sqrt[p]{\alpha} = 1 + b\pi \quad \text{where } b \in \mathcal{O}_{\varphi'}.
\]

Then

\[
\alpha = (1 + b\pi)^p = 1 + pb\pi + b^p\pi^p \pmod{\varphi^{p+1}}.
\]

By lemma 11.15, $\pi^p = -p\pi \pmod{\varphi^{p+1}}$, so $\pi^p = -p\pi \pmod{\varphi^{p+1}}$, and

\[
\alpha = 1 + pb\pi - b^p\pi^p \pmod{\varphi^{p+1}}.
\]

Therefore we have

\[(11.4) \quad a = b - b^p \pmod{\varphi'}.
\]

Let $\left(\frac{\pi, \alpha}{\varphi} \right)_p \sqrt[p]{\alpha} = \zeta^a \sqrt[p]{\alpha}$. Since K/k is unramified then we have

\[
\left(\frac{\pi, K/k}{\varphi} \right) = \phi_{K/k}(i(\pi, \varphi, k)) = \left(\frac{K/k}{\varphi} \right).
\]

and therefore for any β in $\mathcal{O}_{\varphi'}$ we have

\[
\left(\frac{\pi, K/k}{\varphi} \right) \beta = \beta^{N\varphi} = \beta^p \pmod{\varphi'}.
\]

Choose $\beta = (\sqrt[p]{\alpha} - 1)/\pi$, which is in $\mathcal{O}_{\varphi'}$ by lemma 11.13. Then

\[
\left(\frac{\pi, K/k}{\varphi} \right) \beta = \frac{\zeta^a \sqrt[p]{\alpha} - 1}{\pi},
\]
so
\[\frac{\zeta^a \sqrt[p]{\alpha} - 1}{\pi} = \left(\frac{\sqrt[p]{\alpha} - 1}{\pi} \right)^p = \beta^p (\text{mod } \wp'). \]

We have \(\zeta^a = 1 - a'\pi (\text{mod } \wp^2) \) by lemma 11.15, so
\[\frac{(1 - a'\pi)(1 + b\pi) - 1}{\pi} = b^p (\text{mod } \wp'). \]

This shows that \(-a' + b = b^p (\text{mod } \wp') \), or \(a' = b - b^p (\text{mod } \wp') \). Comparison with (11.4) shows \(a = a' (\text{mod } \wp') \). Both \(a \) and \(a' \) are rational integers, so have
\[a = a' (\text{mod } p), \]
which completes the proof of the lemma.

We have solved the first basic problem for prime \(p \). The generator of the \(p \)-primary elements modulo \(W_\wp W(p + 1) = \gamma_0 = 1 + p\pi \), and
\[\left(\frac{\pi, \gamma_0}{\wp} \right)_p = \zeta \quad \text{where } \pi = 1 - \zeta. \]

Generators of \(W_\wp W(1)^p \) and the \(p \)-th power reciprocity law. If we can find a set of generators \(u_1, \ldots, u_{p-1} \) for \(W_\wp(1)/W_\wp(p) \), then every element \(\alpha \) of \(W_\wp(1) \) will be expressible as \(\alpha = u_1^{t_1} \ldots u_{p-1}^{t_{p-1}} \gamma_0 (\text{mod } \wp^{p+1}) \), so if \(\left(\frac{\pi, u_i}{\wp} \right) = \zeta^{c_i} \) then we will have
\[W_\wp = \{ \alpha \in W_\wp(1) \mid c_1 t_1 + \ldots + c_{p-1} t_{p-1} + t_0 = 0 (\text{mod } p) \}. \]

The constants \(c_i \) will be determined in the last section.

Lemma 11.17. If \(r \) is a primitive root modulo \(p \) then
\[r^i \prod_{k=1, k \neq i}^{p-1} (r^i - r^k) = -1 (\text{mod } p). \]

Proof. Since \(r, r^2, \ldots, r^{p-1} \) form a reduced residue system modulo \(p \), then
\[\prod_{k=1}^{p-1} (x - r^k) = x^{p-1} - 1 (\text{mod } p). \]
Then
\[
\frac{d}{dx} \prod_{k=1}^{p-1} (x - r^k) = \frac{d}{dx} (x^{p-1} - 1) \pmod{p},
\]
or
\[
\sum_{i=1}^{p-1} \prod_{k \neq i} (x - r^k) = (p-1)x^{p-2} \pmod{p}.
\]

Set \(x = r^i \) and multiply both sides by \(r^i \) to obtain the desired result.
\[
r^i \prod_{k \neq i}^{p-1} (r^i - r^k) = (p-1)r^i(p-1) = -1 \pmod{p}.
\]

Lemma 11.18. Let \(\sigma \) be a generator of \(G(K_p : Q(p)) \) and let \(\zeta^\sigma = \zeta^r. \) Then \(r \) is a primitive root modulo \(p. \) For \(i = 1, \ldots, p-1, \) set
\[
u_i = (1 - \pi^i)r^i(\sigma - r)(\sigma - r^2) \cdots (\sigma - r^{i-1})(\sigma - r^{i+1}) \cdots (\sigma - r^{p-1})
\]

Then
\[
u_i^\sigma \equiv_p u_i r_i \quad \text{and} \quad \nu_i = 1 - \pi^i \pmod{\wp^{i+1}}.
\]

Proof. If \(f(x) \) and \(g(x) \) are polynomials in \(\mathbb{Z}[x] \) and \(f(x) = g(x) \pmod{p} \) then \(\alpha^f(\sigma) \equiv_p \alpha^g(\sigma) \) for \(\alpha \) in \(K^*. \) Since \(f(x) = (x-r)(x-r^2) \cdots (x-r^{p-1}) \) is a polynomial of degree \(p-1 \) having roots \(1, 2, \ldots, p-1, \pmod{p}, \) then \(f(x) = x^{p-1} - 1 \pmod{p}. \) Therefore \(\alpha^f(\sigma) \equiv_p 1. \) We have \(\nu_i^\sigma - r^i = (1 - \pi^i)^{-r^i}f(\sigma) \equiv_p 1, \) so \(\nu_i^\sigma \equiv_p u_i r_i, \) which is the first part of the lemma. For the second part, we have \(\pi = 1 - \zeta, \) so
\[
\pi^\sigma = 1 - \zeta^\sigma = 1 - \zeta^r = (1 - (1 - \pi)^r) = r\pi \pmod{\wp^2}.
\]

Put \(\pi^\sigma = r\pi + \beta \pi^2. \) Then \((\pi^\sigma)^i = (r\pi + \beta \pi^2)^i = r^i\pi^i \pmod{\wp^{i+1}}, \) so
\[
(\pi^i)^\sigma = r^i\pi^i \pmod{\wp^{i+1}}.
\]

Before proceeding further, we make the following observation. If \(j_1, \ldots, j_{s+1} \) are any given integers, then we have
\[
(1 + r^i(r^i - r^{j_1}) \cdots (r^i - r^{j_s})\pi^i)^{\sigma - r^{j_{s+1}}}
\]
\[
= (1 + r^i(r^i - r^{j_1}) \cdots (r^i - r^{j_s})\pi^i)^\sigma (1 + r^i(r^i - r^{j_1}) \cdots (r^i - r^{j_s})\pi^i)^{-r^{j_{s+1}}}
\]
\[
= (1 + r^i(r^i - r^{j_1}) \cdots (r^i - r^{j_s})r^i\pi^i) \quad (1 - r^i(r^i - r^{j_1}) \cdots (r^i - r^{j_s})r^{j_{s+1}}\pi^i)^{-1} \pmod{\wp^{i+1}}
\]
\[
= (1 + r^i(r^i - r^{j_1}) \cdots (r^i - r^{j_s})(r^i - r^{j_{s+1}})\pi^i) \pmod{\wp^{i+1}}
\]
To compute u_i, we start from $(1 - \pi^i)^{-r^i} = 1 + r^i\pi^i(\text{mod } \wp^{i+1})$, then successively apply $\sigma - r$, $\sigma - r^2$, up to $\sigma - r^{p-1}$, but omit $\sigma - r^i$. By applying the above observation at each step, we arrive at

$$u_i = (1 + r^i(r^i - r) \ldots (r^i - r^{i-1})(r^i - r^{i+1}) \ldots (r^i - r^{p-1})\pi^i)(\text{mod } \wp^{i+1}).$$

By lemma 11.17, we obtain $u_i = 1 - \pi^i(\text{mod } \wp^{i+1})$, which completes the proof.

Lemma 11.19. For $1 \leq i \leq p - 1$ and $1 \leq j \leq p - 1$, we have

$$(u_i, u_j)_{\wp^p} = \begin{cases} \zeta^{-i} & \text{if } i + j = p \\ 0 & \text{if } i + j \neq p \end{cases}$$

Proof. We apply automorphisms on the left in this proof, so we have $\sigma\zeta = \zeta r$ and $\sigma u_i \simeq p u_i^r$. First, we have

$$(11.5) \quad (\frac{\sigma u_i, \sigma u_j}{\wp})_{\wp^p} = (\frac{u_i^r, u_j^r}{\wp})_{\wp^p} = (\frac{u_i, u_j}{\wp})_{\wp^p}^{r^{-i+j}}.$$

We also have

$$\left(\frac{\sigma u_i, \sigma u_j}{\wp}\right)_{\wp^{\sqrt{\wp}}} = \left(\frac{\sigma u_i, k(\sqrt{\wp}u_j)/k}{\wp}\right)_{\wp^{\sqrt{\wp}}}.$$

Automorphism $\sigma : k \to k$ may be extended to an isomorphism $\sigma : k(\wp^{\sqrt{\wp}}) \to k(\wp^{\sqrt{\wp}})$. (In the notation of lemma 10.43, we have $K = k(\sqrt{\wp})$, $K' = k(\wp^{\sqrt{\wp}})$, $k' = k$, and $\wp' = \wp$.) Since $(\sigma \sqrt{u_j})^p = \sigma u_j$, then $\sigma \sqrt{u_j}$ is a root of $x^p - \sigma u_j$, and we may write $\sigma \sqrt{u_j} = \sqrt{\wp}u_j$. (The particular choice of $\sqrt{\wp}u_j$ determines the extension of σ.) Using the notation of lemma 10.43, we have

$$\left(\frac{\sigma u_i, k(\wp^{\sqrt{\wp}})/k}{\wp}\right) = \left(\frac{u_i, K'/k'}{\wp'}\right) = \sigma \left(\frac{u_i, K/k}{\wp}\right)^{-1} = \sigma \left(\frac{u_i, k(\sqrt{u_j})/\wp}{\wp}\right)^{-1}.$$

Therefore

$$\left(\frac{\sigma u_i, k(\sqrt{\wp}u_j)/\wp}{\wp}\right)_{\wp^{\sqrt{\wp}}} = \sigma \left(\frac{u_i, k(\sqrt{\wp}u_j)/\wp}{\wp}\right)^{-1} = \sigma \left(\frac{u_i, u_j}{\wp}\right)^{r} \sqrt{\wp}u_j.$$
or

\[\left(\frac{\sigma u_i, \sigma u_j}{\wp} \right)_p = \left(\frac{u_i, u_j}{\wp} \right)_p^r \]

Comparison with (11.5) shows that

\[\left(\frac{u_i, u_j}{\wp} \right)_p^r \frac{1}{\wp} = \left(\frac{u_i, u_j}{\wp} \right)_p^{r+i+j} \]

If \(\left(\frac{u_i, u_j}{\wp} \right)_p \neq 1 \), then we must have \(r = i+j (\mod p) \), so \(1 = i + j (\mod p - 1) \). For \(i \) and \(j \) in the range \(1 \leq i \leq p-1 \) and \(1 \leq j \leq p-1 \), the only value of \(i + j \) which satisfies the condition \(1 = i + j (\mod p - 1) \) is \(i + j = p \). So far, we have established that

\[\left(\frac{u_i, u_j}{\wp} \right)_p = 0 \quad \text{if } i + j \neq p. \]

We need to compute \(\left(\frac{u_i, u_{p-i}}{\wp} \right)_p \). Since \(u_k = 1 - \pi^k (\mod \wp^{k+1}) \) for \(1 \leq k < p \), and \(\gamma_0 = 1 + p\pi \), then we can find integers \(a_k \) for \(i + 1 \leq k \leq p \) such that \(0 \leq a_k < p \) and

\[1 - \pi^i = u_i u_{i+1}^{a_{i+1}} \ldots u_{p-1}^{a_{p-1}} \gamma_0^{a_p} (\mod \wp^{p+1}). \]

Likewise, we can find integers \(b_\ell \) for \(p-i + 1 \leq \ell \leq p \) such that \(0 \leq b_\ell < p \) and

\[1 - \pi^{p-i} = u_{p-i} u_{p-i+1}^{b_{p-i+1}} \ldots u_{p-1}^{b_{p-1}} \gamma_0^b (\mod \wp^{p+1}). \]

Since \(\left(\frac{u_i, u_j}{\wp} \right)_p = 0 \) unless \(i + j = p \), and since \(\gamma_0 \) is \(p \)-primary, we have

\[(11.6) \quad \left(\frac{1 - \pi^i, 1 - \pi^{p-i}}{\wp} \right)_p = \left(\frac{u_i u_{i+1}^{a_{i+1}} \ldots u_{p-1}^{a_{p-1}} \gamma_0^{a_p} u_{p-i} u_{p-i+1}^{b_{p-i+1}} \ldots u_{p-1}^{b_{p-1}} \gamma_0^b}{\wp} \right)_p = \left(\frac{u_i, u_{p-i}}{\wp} \right)_p. \]

The problem now is to compute \(\left(\frac{1 - \pi^i, 1 - \pi^{p-i}}{\wp} \right)_p \). Suppose that \(\alpha + \beta = \gamma \), and put \(\mu = \alpha / \gamma \). Then \(1 - \mu = \beta / \gamma \). By lemma 10.6(f), we have

\[1 = \left(\frac{1 - \mu, \mu}{\wp} \right)_p = \left(\frac{\beta, \alpha}{\wp} \right)_p \left(\frac{\beta, \gamma}{\wp} \right)^{-1} \left(\frac{\gamma, \alpha}{\wp} \right)^{-1} \left(\frac{\gamma, \gamma}{\wp} \right)_p. \]
Since \(\left(\frac{\alpha \gamma}{\psi} \right)_p = 1 \) for \(p > 2 \), we have

\[
\left(\frac{\beta, \alpha}{\varphi} \right)_p = \left(\frac{\beta, \gamma}{\varphi} \right)_p \left(\frac{\gamma, \alpha}{\varphi} \right)_p.
\]

Choose \(\alpha = \pi^{p-i}(1 - \pi^i) \) and \(\beta = 1 - \pi^p \). Then \(\gamma = 1 - \pi^p \), and we have

\[
\left(\frac{1 - \pi^{p-i}, \pi^{p-i}(1 - \pi^i)}{\varphi} \right)_p = \left(\frac{1 - \pi^{p-i}, 1 - \pi^p}{\varphi} \right)_p \left(\frac{1 - \pi^p, \pi^{p-i}(1 - \pi^i)}{\varphi} \right)_p.
\]

Apply lemma 10.6(f) to the left side, and apply the fact that \(1 - \pi^p \) is \(p \)-primary (annihilates units) to the right to obtain

\[
\left(\frac{1 - \pi^{p-i}, 1 - \pi^i}{\varphi} \right)_p = \left(\frac{1 - \pi^p, \pi^{p-i}}{\varphi} \right)_p.
\]

We have \(1 - \pi^p = 1 + p\pi \pmod{\varphi^{p+1}} \) by lemma 11.15, so

\[
\left(\frac{1 - \pi^i, 1 - \pi^{p-i}}{\varphi} \right)_p = \left(\frac{\pi^{p-i}, 1 + p\pi}{\varphi} \right)_p.
\]

Apply (11.6) on the left side, and apply lemma 11.16 on the right to obtain

\[
\left(\frac{u_i, u_{p-i}}{\varphi} \right)_p = \zeta^{p-i} = \zeta^{-i}.
\]

The completes the proof of lemma 11.19.

Theorem 11.20 - Reciprocity Law for Odd Prime Powers. If \(\alpha \) and \(\beta \) are elements of \(\mathcal{W}_{\varphi}(1) \), then let \(a_i \) and \(b_i \) \((1 \leq i < p) \) be integers such that \(0 \leq a_i < p \) and \(0 \leq b_i < p \) and

\[
\alpha = u_1^{a_1} \ldots u_{p-1}^{a_{p-1}} \pmod{\varphi^p} \quad \text{and} \quad \beta = u_1^{b_1} \ldots u_{p-1}^{b_{p-1}} \pmod{\varphi^p}.
\]

Then

\[
\left(\frac{\alpha}{\beta} \right)_p \left(\frac{\beta}{\alpha} \right)_p^{-1} = \zeta^{-\sum_{i=1}^{p-1} ia_i b_{p-i}}.
\]

Proof. Since \(\alpha \) and \(u_1^{a_1} \ldots u_{p-1}^{a_{p-1}} \) differ only by a factor that is \(p \)-primary, and likewise for \(\beta \) and \(u_1^{b_1} \ldots u_{p-1}^{b_{p-1}} \), then we have

\[
\left(\frac{\alpha}{\beta} \right)_p \left(\frac{\beta}{\alpha} \right)_p^{-1} = \left(\frac{\alpha, \beta}{\varphi} \right)_p = \prod_{i=1}^{p-1} \prod_{j=1}^{p-1} \left(\frac{u_i, u_j}{\varphi} \right)_p^{a_i b_j} = \prod_{i=1}^{p-1} \left(\frac{u_i, u_{p-i}}{\varphi} \right)_p^{a_i b_{p-i}} = \prod_{i=1}^{p-1} \zeta^{-i a_i b_{p-i}} = \zeta^{-\sum_{i=1}^{p-1} i a_i b_{p-i}}.
\]
Computation of symbols \(\left(\frac{\pi u_i}{\wp} \right)_p \).

Lemma 11.21.

\[
\left(\frac{p, u_i}{\wp} \right)_p = 1 \quad \text{for } i = 1, \ldots, p - 1
\]

Proof. By lemma 11.18, we have

\[
\left(\frac{p, \sigma u_i}{\wp} \right)_p = \left(\frac{p, u_i^{r_i}}{\wp} \right)_p = \left(\frac{p, u_i}{\wp} \right)_p^{r_i}.
\]

We can compute \(\left(\frac{p, \sigma u_i}{\wp} \right)_p \) in another way using lemma 10.43. Proceeding as in the proof of lemma 11.19, we have

\[
\sqrt{\sigma u_i} = \sigma \sqrt{u_i}
\]

so

\[
\left(\frac{p, \sigma u_i}{\wp} \right)_p = \sigma \left(\frac{p, u_i^{r_i}}{\wp} \right)_p = \sigma \left(\frac{p, u_i}{\wp} \right)_p^{r_i}.
\]

Therefore

\[
\left(\frac{p, \sigma u_i}{\wp} \right)_p \sigma \sqrt{u_i} = \sigma \left(\frac{p, u_i^{r_i}}{\wp} \right)_p \sqrt{u_i}.
\]

Comparison with (10.7) shows that \(\left(\frac{p, u_i}{\wp} \right)_p^{r_i} \). If \(\left(\frac{p, u_i}{\wp} \right)_p \neq 1 \) then we must have \(r = r'(\mod p) \), or \(i = 1 \).

It remains to prove the lemma in the case \(i = 1 \). We have \(1 - \pi = \zeta \), and by lemma 11.17 with \(i = 1 \) we have \(r(r - r^2) \ldots (r - r^{p-1}) = -1(\mod p) \), so

\[
(10.8) \quad u_1 = \zeta^{-r(r-2)\ldots(r-p+2)} = \zeta^{-r(r-2)\ldots(r-p+2)} = \zeta.
\]

We have \(p = (1 - \zeta)(1 - \zeta^2) \ldots (1 - \zeta^{p-1}) \), so the lemma is proved if \(\left(\frac{1 - \zeta^i}{\wp} \right)_p = 1 \) for \(1 \leq j < p \). For each \(j \) there is a \(j' \) so that \(jj' = 1(\mod p) \), and

\[
\left(\frac{1 - \zeta^i}{\wp} \right)_p = \left(\frac{1 - \zeta^j}{\wp} \right)_p = \left(\frac{1 - \zeta^j}{\wp} \right)_p^{j'} = 1.
\]

This completes the proof of the lemma.
Lemma 11.22. Put $\xi = -\frac{\pi^{p-1}}{p}$. Then

$$\left(\frac{\pi, u_i}{\varphi}\right)_p = \left(\frac{\xi, u_i}{\varphi}\right)_p$$

for $1 \leq i < p$.

Proof. Since p is odd then $-1 = (-1)^p$, so by lemma 11.21 we have

$$\left(\frac{\pi, u_i}{\varphi}\right)_p = \left(\frac{\pi^{p-1}, u_i}{\varphi}\right)_p^{-1} = \left(\frac{-\pi^{p-1}/p, u_i}{\varphi}\right)_p^{-1} = \left(\frac{\xi, u_i}{\varphi}\right)_p^{-1},$$

which proves the lemma.

For any α in $W_\pi(1)$, let $t_1(\alpha), \ldots, t_{p-1}(\alpha)$ be the unique integers satisfying

$$\alpha = u_1^{t_1(\alpha)} \cdot u_{p-1}^{t_{p-1}(\alpha)}(\mod \varphi^p) \quad \text{and} \quad 0 \leq t_i(\alpha) < p$$

Then

$$\left(\frac{\xi, u_i}{\varphi}\right)_p = \left(\frac{u_{p-i}^{t_{p-i}(\xi)} u_i}{\varphi}\right)_p = \xi^{it_{p-i}(\xi)}.$$

The problem is to compute $t_1(\xi), \ldots, t_{p-1}(\xi)$ for $1 \leq i \leq p-2$, since the next lemma shows that $t_{p-1}(\xi) = 1$.

Lemma 11.23.

$$\left(\frac{\xi, u_1}{\varphi}\right)_p = 1, \quad \text{or} \quad t_{p-1}(\xi) = 0.$$

Proof. By (11.3) and (11.8) we have

$$\left(\frac{\xi, u_i}{\varphi}\right)_p = \left(\frac{-\pi^{p-1}, u_i}{\varphi\varphi}\right)_p = \left(\frac{-1, \xi}{\varphi}\right)_p \left(\frac{1 - \xi}{\varphi}\right)_p^{p-1} \prod_{j=1}^{p-1} \left(\frac{1 - \xi^j, \xi}{\varphi}\right)_p.$$

We have $-1 = (-1)^p$, and $\left(\frac{1 - \xi^j, \xi}{\varphi}\right)_p = 1$ was shown in the proof of lemma 11.21.
Kummer’s logarithmic differential quotient for \(p > 2 \). Every element \(\alpha \) in \(\mathfrak{o}_p \) is a linear combination of \(1, \zeta, \ldots, \zeta^{p-2} \) with coefficients in \(\mathbb{Z}(p) \). Suppose that \(\phi(x) \) and \(\psi(x) \) are polynomials over \(\mathbb{Z}(p) \) such that \(\alpha = \phi(\zeta) = \psi(\zeta) \). Then \(\zeta \) is a root of \(\phi(x) - \psi(x) \), so \(\phi(x) - \psi(x) \) is divisible by the minimal polynomial of \(\zeta \) over \(\mathbb{Z}(p) \), which is \(f_0(x) = x^{p-1} + \cdots + x + 1 \) because \([\mathbb{Q}(\zeta) : \mathbb{Q}(2)] = p - 1\). Let \(\eta(x) \) be a polynomial with coefficients in \(\mathbb{Z}(p) \) such that

\[
\phi(x) - \psi(x) = f_0(x)\eta(x).
\]

Applying formal differentiation, we obtain

\[
(11.11) \quad \phi^{(n)}(x) - \psi^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} f_0^{(k)}(x)\eta^{(n-k)}(x) \quad \text{for} \ 0 \leq n \leq p - 1
\]
as an identity of polynomials over \(\mathbb{Z}(p) \).

Lemma 11.24. Let \(f_0(x) = x^{p-1} + \cdots + x + 1 \). Then

\[
f_0^{(k)}(1) = 0 \pmod{p} \quad \text{for} \ 0 \leq k \leq p - 2
\]
together with

\[
f_0^{(p-1)}(1) = -1 \pmod{p}.
\]

Proof. Both sides of the identity

\[
(p - 1)!f_0(x) = \sum_{k=0}^{p-1} f_0^{(k)}(1) \frac{(p - 1)!}{k!} (x - 1)^k
\]
are polynomials with integer coefficients, and \(f_0^{(k)}(1) \) and \((p - 1)!/k! \) are integers. We have \((x - 1)f_0(x) = x^p - 1 = (x - 1)^p \pmod{p} \), so \(f_0(x) = (x - 1)^{p-1} \pmod{p} \). Therefore

\[
(p - 1)!(x - 1)^{p-1} = \sum_{k=0}^{p-1} f_0^{(k)}(1) \frac{(p - 1)!}{k!} (x - 1)^k \pmod{p}
\]
The coefficients of \((x - 1)^k \) for \(0 \leq k \leq p - 1 \) must be identical on both sides, so

\[
f_0^{(k)}(1) = 0 \pmod{p} \quad \text{for} \ 0 \leq k \leq p - 2,
\]
and

\[
f_0^{(p-1)}(1) = (p - 1)! = -1 \pmod{p}.
\]
Lemma 11.25. If α is an element of $\mathbb{Q}_p(\zeta)$ and $\alpha = \phi(\zeta) = \psi(\zeta)$ where $\phi(x)$ and $\psi(x)$ are polynomials with coefficients in \mathbb{Z}_p, then

$$\phi^{(n)}(1) - \psi^{(n)}(1) = 0 \pmod{p} \text{ for } 0 \leq n \leq p - 2$$

and

$$\phi^{(p-1)}(1) - \psi^{(p-1)}(1) = -\frac{\phi(1) - \psi(1)}{p} \pmod{p}$$

Proof. The result for $0 \leq n \leq p - 2$ is obtained by setting $x = 1$ in (11.11) and applying lemma 11.24. For $n = p - 1$ we have

$$\phi^{(p-1)}(1) - \psi^{(p-1)}(1) = f_0^{(p-1)}(1)\eta(1) = -\eta(1) \pmod{p}.$$

We have $\phi(1) - \psi(1) = f_0(1)\eta(1)$. Since $f_0(1) = p$ then $\phi(1) - \psi(1)$ is divisible by p and $\eta(1) = (\phi(1) - \psi(1))/p$, which gives the desired result for $n = p - 1$.

Lemma 11.26. Suppose that α is in $W_{\psi}(1)$ and $\alpha = \phi(\zeta) = \psi(\zeta)$. Then we have $1 = \phi(1) = \psi(1) \pmod{0}$, and

$$\phi^{(n)}(1) = \psi^{(n)}(1) \pmod{p} \text{ for } 0 \leq n < p - 1$$

and

$$\phi^{(p-1)}(1) + \frac{\phi(1) - 1}{p} = \psi^{(p-1)}(1) + \frac{\psi(1) - 1}{p} \pmod{p}$$

Proof. Since $\alpha = 1 \pmod{\phi}$ and $\zeta = 1 \pmod{\phi}$ then we have $1 = \phi(1) = \psi(1) \pmod{\phi}$. Therefore $1 = \phi(1) = \psi(1) \pmod{p}$, so $\phi(1) - 1$ and $\psi(1) - 1$ are divisible by p. The results now follow immediately from lemma 11.25.

We consider the formal power series $F(z) = \log (\phi(e^z))$.

$$F(z) = \log (\phi(1)) + \frac{\phi'(1)}{\phi(1)}z + \frac{(\phi''(1) + \phi'(1))^2}{\phi(1)^2}z^2 + \ldots$$

If $\phi(1)$ is in $W_{\psi}(1)$ then $\log (\phi(1))$ is defined, but we are actually interested only in coefficients of z^n for $1 \leq n \leq p - 1$.

Lemma 11.27.

\[
\frac{d^n}{dz^n} F(z) = \frac{\phi^{(n)}(e^z) e^{nz}}{\phi(e^z)} + R_n(z)
\]

where \(R_n(z)\) is a rational expression in \(e^z, \phi(e^z), \phi'(e^z), \ldots, \phi^{(n-1)}(e^z)\). The numerator of \(R_n(z)\) is a sum of terms each of which is divisible by at least one of \(\phi'(e^z), \ldots, \phi^{(n-1)}(e^z)\), and the denominator is a power of \(\phi(e^z)\).

Proof. Put \(w = e^z\), \(u_0 = \phi(e^z)\), and \(u_i = \phi^{(i)}(e^z)\) for \(i \geq 0\). Then \(w' = w\) and \(u'_i = u_{i+1}w\) for \(i \geq 0\). We have \(F(z) = \log(u_0)\), so \(dF(z)/dz = u_1w/u_0\). Therefore \(R_1(z) = 0\), so the conclusion holds for \(n = 1\). For \(n = 2\), we have

\[
\frac{d^2}{dz^2} F(z) = \frac{u_2w^2}{u_0} + \frac{u_1w}{u_0} - \frac{u_2w^2}{u_0^2} = \frac{u_2w^2}{u_0} + \frac{u_1u_0w - u_2u_1w^2}{u_0^2}
\]

so every term of the numerator of \(R_2(z)\) is divisible by \(u_1\).

Assume that the lemma is true for \(n\). Then

\[
\frac{d^n}{dz^n} F(z) = \frac{u_nw^n}{u_0} + R_n(z)
\]

and

\[
R_n(z) = \frac{S_1u_1 + \cdots + S_{n-1}u_{n-1}}{u_0^{k_n}}
\]

where \(S_1(z), \ldots, S_{n-1}(z)\) are polynomials in \(w, u_0, \ldots, u_{n-1}\). We have

\[
\frac{d}{dz} R_n(z) = \frac{\sum_{j=1}^{n-1} \left((S'_j u_j + S_j u_{j+1}w) u_0^{k_n} - k_n S_j u_j u_0^{k_n-1} u_1 w \right) u_0^{2k_n}}{u_0^{2k_n}}
\]

and every term of the numerator is divisible by at least one of \(u_1, \ldots, u_n\). Then

\[
\frac{d^{n+1}}{dz^{n+1}} F(z) = \\
= \frac{u_{n+1}w^{n+1}}{u_0} + \frac{nu_nw^n}{u_0} - \frac{u_{n+1}w^{n+1}}{u_0^2} + \frac{d}{dz} R_n(z) = \frac{u_{n+1}w^{n+1}}{u_0} + R_{n+1}(z)
\]

We see that \(R_{n+1}(z)\) is a rational expression in \(w, u_0, u_1, \ldots, u_n\) with denominator \(u_0^{2k_n}\), and every term of the numerator contains at least one factor from the list \(u_1, \ldots, u_n\), and the conclusion therefore follows.
Lemma 11.28. If $\alpha = \phi(\zeta)$ is in $W_{p}(1)$, define $\ell_n(\alpha)$ by

$$
\ell_n(\alpha) = \begin{cases}
\frac{d^n}{dz^n} F(0) & \text{for } 1 \leq n \leq p - 2 \\
\frac{d^{(p-1)}}{dz^{(p-1)}} F(0) + \frac{\phi(1) - 1}{p} & \text{for } n = p - 1.
\end{cases}
$$

Then $\ell_n(\alpha)$ depends only on α and not on $\phi(x)$ for $1 \leq n \leq p - 1$.

Proof. By lemma 11.27, $\frac{d^n}{dz^n} F(0) = \frac{\phi^{(n)}(1)}{\phi(1)} + R_n(0)$, where $R_n(0)$ is a rational expression in $1, \phi(1), \ldots, \phi^{n-1}(1)$ with denominator a power of $\phi(1)$. By lemma 11.26, $\phi(1) \equiv 1 \pmod{p}$ and $\ell_1(\alpha), \ldots, \ell_{p-2}(\alpha)$ depend modulo p only on α and not on $\phi(x)$. For $n = p - 1$, we have

$$
\ell_{p-1}(\alpha) = \phi^{(p-1)}(1) + \frac{\phi(1) - 1}{p} + R_{p-1}(0)(\text{mod } p).
$$

By lemma 11.26, this expression depends modulo p only on α and not on $\phi(x)$.

Lemma 11.29. For α_1 and α_2 in $W_{p}(1)$, we have

(1) $\ell_j(\alpha_1\alpha_2) = \ell_j(\alpha_1) + \ell_j(\alpha_2)(\text{mod } p)$,

(2) $\ell_j(\alpha_1\alpha_2^{-1}) = \ell_j(\alpha_1) - \ell_j(\alpha_2)(\text{mod } p)$.

If $\alpha_1 = \alpha_2(\text{mod } \wp^{p-1})$ then

(3) $\ell_j(\alpha_1) = \ell_j(\alpha_2)(\text{mod } p)$ for $1 \leq j \leq p - 2$.

If $\alpha_1 = \alpha_2(\text{mod } \wp^p)$ then

(4) $\ell_{p-1}(\alpha_1) = \ell_{p-1}(\alpha_2)(\text{mod } p)$.

If σ generates $G(\mathbb{Q}_{(p)}(\zeta) : \mathbb{Q}_{(p)})$ and $\zeta^\sigma = \zeta^r$ then

(5) $\ell_j(\alpha^\sigma) = r^j \ell_j(\alpha)(\text{mod } p)$ for $1 \leq j \leq p - 1$.

Proof. If $\alpha_1 = \phi_1(\zeta)$ and $\alpha_2 = \phi_2(\zeta)$ then $\alpha_1\alpha_2 = \phi_1(\zeta)\phi_2(\zeta)$, and (1) follows from the identity of formal power series

$$
\log(\phi_1(e^z)\phi_2(e^z)) = \log(\phi_1(e^z)) + \log(\phi_2(e^z)).
$$
Then (2) follows from
\[\ell_j((\alpha_1\alpha_2^{-1})\alpha_2) = \ell_j(\alpha_1\alpha_2^{-1}) + \ell_j(\alpha_2)(\mod p). \]

As to (3), it is enough to show that if \(\alpha = 1(\mod \wp^{p-1}) \) then \(\ell_j(\alpha) = 0(\mod p) \) for \(1 \leq j \leq p - 2 \). Put
\[\alpha = a_0 + \sum_{k=0}^{p-2} a_k \pi^k. \]

Then \(a_0 = 1(\mod p) \), and \(a_k = 0(\mod p) \) for \(1 \leq k \leq p - 2 \). We have \(\alpha = a_0 + \sum_{k=0}^{p-2} a_k(1 - \zeta)^k \), so \(\alpha = \phi(\zeta) \) with
\[\phi(x) = a_0 + \sum_{k=0}^{p-2} a_k(1 - x)^k \]

We have \(\phi(x) = 1(\mod p) \), and \(\phi^{(n)}(x) = 0(\mod p) \) for \(n \geq 1 \). By lemma 11.27 we have
\[\ell_1(\alpha) = \cdots = \ell_{p-2}(\alpha) = 0(\mod p). \]

As to (4), since all derivatives of \(\phi(x) \) vanish modulo \(p \) then all derivatives of \(\log(\phi(e^z)) \) vanish modulo \(p \) at \(z = 0 \). If \(\alpha = 1(\mod \wp^p) \) then \(a_0 = 1(\mod p^2) \), so we have
\[\ell_{p-1}(\alpha) = \phi(1) - \frac{1}{p}a_0 = \frac{a_0 - 1}{p} = 0(\mod p). \]

As to (5), if \(\alpha = \sum_{k=0}^{p-2} b_k \xi^k = \phi(\zeta) \) and \(\zeta^\sigma = \zeta^r \) then \(\alpha^\sigma = \sum_{k=0}^{p-2} b_k \xi^{rk} = \phi(\zeta^r) = \psi(\zeta) \) where \(\psi(x) = \phi(x^r) \). If \(\log(\phi(e^z)) = \sum_{n=0}^{\infty} c_n z^n \), then \(\log(\psi(e^z)) = \log(\phi(e^{rz})) = \sum_{n=0}^{\infty} c_n r^n z^n \). Therefore
\[\ell_j(\alpha^\sigma) = r^j \ell_j(\alpha) \quad \text{for } 1 \leq j \leq p - 2. \]

For \(j = p - 1 \), we have \(r^{p-1} = 1(\mod p) \) so we are claiming that \(\ell_{p-1}(\alpha^\sigma) = \ell_{p-1}(\alpha)(\mod p) \). Since all derivatives of \(\log(\phi(e^z)) \) vanish modulo \(p \) at \(z = 0 \), this reduces to
\[\frac{\phi(x) - 1}{x} \bigg|_{x=1} = \frac{\phi(x^r) - 1}{x} \bigg|_{x=1} (\mod p). \]

This completes the proof of lemma 11.29.
Lemma 11.30. If α is in $W_p(1)$ and $t_1(\alpha), \ldots t_{p-1}(\alpha)$ are as in (11.9), then

$$t_j(\alpha) = \frac{(-1)^{j-1}}{j!} \ell_j(\alpha) \pmod{p} \quad \text{for } 1 \leq j \leq p-1.$$

Proof. We have $\ell_j(u_i^a) = r^i \ell_j(u_i)(\mod p)$ for $1 \leq j \leq p-1$ by lemma 11.29(5). Also, we have $u_i^a = u_i^r \pmod{\wp^p}$ by lemma 11.18, so $\ell_j(u_i^a) = \ell_j(u_i^r)(\mod p)$ for $1 \leq j \leq p-2$ by lemma 11.29(3) and for $j = p-1$ by lemma 11.29(4). Therefore, if $\ell_j(u_i) \neq 0(\mod p)$ then $r^i = r^j(\mod p)$, or $i = j$. Since $u_i = 1 - \pi^i(\mod \wp^{i+1})$ by lemma 11.18, we have

$$u_j = (1 - \pi^j)u_{j+1}^{a_{j+1}} \ldots u_{p-1}^{a_{p-1}}(\mod p),$$

so $\ell_j(u_j) = \ell_j(1 - \pi^j)(\mod p)$. Since $1 - \pi^j = 1 - (1 - \zeta)^j$, then we take $\phi(x) = 1 - (1 - x)^j$. Then

$$\phi(e^z) = 1 - (1 - e^z)^j = 1 + (-1)^{j-1}z^j + \ldots$$

so

$$\log(\phi(e^z)) = (-1)^j z^j + \ldots$$

In this case we have $\phi(1) = 1$, so $(\phi(1) - 1)/p = 0$, and therefore

$$\ell_j(u_j) = \ell_j(1 - \pi^j) = \left. \frac{d^j}{dz^j} \log(\phi(e^z)) \right|_{z=0} = (-1)^j j!(\mod p).$$

Putting $\alpha = u_1^{t_1(\alpha)} \ldots u_{p-1}^{t_{p-1}(\alpha)}(\mod \wp^p)$, we have

$$\ell_j(\alpha) = t_j(\alpha) \ell_j(u_j) = (-1)^j j! t_j(\alpha)(\mod p),$$

which proves the lemma.

We will be completely finished if we can compute $\ell_j(\xi)$ for $1 \leq j \leq p-2$, since we have already established that $t_{p-1}(\xi) = 0$ (lemma 11.23). The Bernoulli numbers B_a are defined by

$$\log \left(\frac{e^z - 1}{z} \right) = \sum_{a=1}^{\infty} \frac{B_a}{a} \frac{z^a}{a!}$$

The denominators of B_1, \ldots, B_{p-2} cannot be divisible by p.
Lemma 11.31. For $1 \leq j \leq p - 2$ we have
\[\ell_j(\xi) = -\frac{B_j}{j} (\mod p) \]

Proof. We have
\[
\xi^{-1} = -\frac{p}{\pi^{p-1}} = -\prod_{k=1}^{p-1} \frac{1 - \zeta^k}{1 - \zeta} = -(p - 1)! \prod_{k=1}^{p-1} \frac{1}{1 - \frac{\zeta^k}{1 - \zeta}} = -(p - 1)! \prod_{k=1}^{p-1} \gamma_k
\]
where $\gamma_k = (1 + \zeta + \cdots + \zeta^{k-1})/k$ is in $W_\varphi(1)$. Since $-(p - 1)! = 1 (\mod \varphi^{p-1})$, then by lemma 11.29(3) we have $\ell_j(-(p - 1)!)/ \ell_j(1) = 0$, so
\[
\ell_j(\xi^{-1}) = \sum_{k=1}^{p-1} \ell_j(\gamma_k) \quad \text{for } 1 \leq j \leq p - 2.
\]
To compute $\ell_j(\gamma_k)$, we use $\phi_k(x) = (1 + x + \cdots + x^{k-1})/k = \frac{x^{k-1}}{k(x-1)}$.
\[
\log (\phi_k(e^z)) = \log \left(\frac{e^{kz} - 1}{kz} \right) \frac{z}{e^z - 1}
\]
\[
= \log \frac{e^{kz} - 1}{kz} - \log \frac{e^z - 1}{z} = \sum_{a=1}^\infty \frac{B_a}{a} (k^a - 1) \frac{z^a}{a!}
\]
Therefore for $1 \leq j \leq p - 2$ we have
\[
\ell_j(\gamma_k) = \frac{d^j}{dz^j} \log (\phi_k(e^z)) \bigg|_{z=0} = \frac{B_j}{j} (k^j - 1) \quad \text{for } 1 \leq j \leq p - 2,
\]
so
\[
\ell_j(\xi^{-1}) = \sum_{k=1}^{p-1} \frac{B_j}{j} (k^j - 1).
\]
If r is a primitive root modulo p and $1 \leq j \leq p - 2$, then
\[
\sum_{\nu=1}^{p-1} k^j = \sum_{\nu=1}^{p-1} r^{\nu j} = \frac{r^{pj} - 1}{r^j - 1} = 0 (\mod p),
\]
so
\[
\ell_j(\xi^{-1}) = -(p - 1) \frac{B_j}{j} = \frac{B_j}{j} (\mod p),
\]
which proves the lemma.