Mathematics 446 - Fall 2005 - sixth assignment

This is due next Monday, November 7.
Read Dedekind's essay and my notes on it. Note that Dedekind includes negative numbers, whereas I don't.
Every proof must depend on results already proven, or on clearly stated properties of rational numbers.

1. Prove that if A satisfies (a1)-(a2) and B is its complement, then the conditions (a1)-(a2) are equivalent to (c1)-(c3).
2. If x and y are positive real numbers, define $x \leq y$ to mean $A_{x} \subseteq A_{y}$, and $x<y$ to mean $x \leq y$ but $x \neq y$. Prove that if x and y are any positive real numbers, the either $x<y, x=y$, or $y<x$.
3. If $x<y$, define $y-x$. Verify that $x+(y-x)=y$.
4. Define what it means for a sequence x_{i} to converge to 0 ; for it to converge to a (positive) real number x.
5. Write out in your own words the proof that if x_{i} is a sequence bounded from above then it converges to a real number.
6. Prove that if

$$
x_{1}-x_{2}+x_{3}-\cdots
$$

is a series with $0<x_{i+1}<x_{i}$ and x_{i} converges to 0 , then the series converges to a limit.

