Elementary results about divisibility

1. The division algorithm

Suppose $n \geq 0, m>0$. There exist unique q and r with $0 \leq r<m$ such that

$$
n=q m+r .
$$

Proof by mathematical induction.

2. Greatest common divisors

If m and n are two non-negative integers not both 0 , the largest integer d dividing them both is called their greatest common divisor. The numbers are called relatively prime if this is 1.
There is an algorithm for finding d due to Euclid (the beginning of book VII of the Elements):
(1) If $m=0$, stop. The gcd is n.
(2) Divide n by m to get $n=q m+r$. Set $n:=m, m:=r$. Go to (1).

Two numbers are called relatively prime if their gcd is 1 .

3. The extended Euclidean algorithm

There exist integers k and ℓ such that

$$
k m+\ell n=d
$$

They can be found by an extended version of the Euclidean algorithm. Let n_{0}, m_{0} be the original values of m and n. The algorithm keeps track of a matrix M such that

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]=M\left[\begin{array}{c}
n_{0} \\
m_{0}
\end{array}\right]
$$

at all times. It starts with $M=I$, and at each step of the Euclidean algorithm sets

$$
M:=\left[\begin{array}{rr}
0 & 1 \\
1 & -q
\end{array}\right] M
$$

At the end we get a matrix with

$$
\left[\begin{array}{l}
d \\
0
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{c}
n_{0} \\
m_{0}
\end{array}\right]
$$

which means that $a n_{0}+b m_{0}=d$.

4. Prime numbers

A positive integer $n>1$ is called prime if it has no divisors other than itself and 1 .
Every positive integer >1 is divisible by at least one prime number.
Proof by mathematical induction.
Directly from the definition:
If p is a prime number and q is not a multiple of p then it is relatively prime to p.
Exercise 1. Prove that if n is any positive integer greater than 1 , then either (1) it is a prime number; or (2) it is a power of a prime number but not prime; or (3) it can be written as the product of two relatively prime numbers, each greater than 1.

5. Divisibility

If a divides $p q$ and is relatively prime to p then it divides q.
Write

$$
k a+\ell p=1
$$

and multiply through by q.
An immediate corollary:
If a prime number p divides q^{2} then it divides q.
Proof. If not, then p is relatively prime to q. But since it divides $q \cdot q$ and is relatively prime to q, it divides q ! Contradiction.

