
Mathematics 309 — Spring 2004 — Fifth homework solutions

1. When you look at an object through a piece of flat glass, where does it seem to be (in terms of the thickness of
the glass and its index of refraction n)?

If a light ray enters a plate of glass and exist the other side, the entering and exiting rays are parallel.

The effect of the glass is to shift the ray forward a bit, the segment in the figure. How much exactly? A bit
of geometry shows the distance to be

d − d

(

tan r

tan i

)

which can also be written as df where

f = 1 − tan r

tan i

= 1 − sin r

sin i

√

1 − sin2 i

1 − sin2 r

= 1 − 1

n

√

1 − sin2 i

1 − sin2 i/n2

= 1 − 1

n

√

1 − s2

1 − s2/n2
(s = sin i)

The fraction f varies between 1 − 1/n and 1 as i goes from 0 to 90◦ and remains close to 1/n for much of the
range, as shown by this graph:

f

sin i
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Even without plotting the graph explicitly you can estimate what its shape is, since for small s

1 − s2

1 − s2/n2
∼ (1 − s2)(1 + s2/n2) = 1 − s2(1 − 1/n2) + s4/n2 ∼ 1 − s2(1 − 1/n2)

and
√

1 − s2

1 − s2/n2
∼

√

1 − s2(1 − 1/n2) ∼ 1 − s2(1 − 1/n2)/2 ,

which means the near s its graph is essentially the parabola

f = (1 − 1/n) + s2(1/n)(1− 1/n2)

at its minimum, which guarantees its flatness. This means that the magnitude of the shift perceived is effectively
constant over that range. So the answer in this range is pretty simple—the object is shifted forward a distance

d − d/n, which means roughly that the effective thickness of the plate glass is d/n.

2. Place a red object at a depth of one meter under water. Draw on a single page the wave front of light rays at an
optical distance of 1 m, 1.5 m, 2 m., both exact and according to the linear theory. Place the object at the bottom
of a page, 5 cm = 1 m. Find the exact equation of the wave front surface outside the water at optical distance d.

The following figure shows the wave fronts at optical distance 0, 0.1, . . . , 2.5.

There is one uniform way to attack all problems of this kind. including the next two as well as this one:

parametrizing a light ray by optical length σ from the starting point. This parametrization will in all the cases we

are looking at give a formula that depends on cases. The ray breaks up into one or more straight line segments,
on each of which the formula is simple.

The most difficult part of the problem is one we have already dealt with, to figure out exactly how the ray breaks
up, and what its direction is on each segment.

Here, the first problem is to figure out the optical distance to the point where the ray hits the water surface. A
ray starting at P0 = (−1, 0) is determined by its direction, which is also determined by the angle of refraction. If

the refracted angle is r, the horizontal coordinate of this point is x = tan(r), and the true length of the path to

that point is s1 =
√

1 + x2. That means optical length σ1 = sn. Let

P1 = (x, 0) .

If we define the initial reduced velocity

v0 =
[sin r, cos r]

n

then up to optical distance σ1 the ray has direction v1 and the point at optical distance σ is

P0 + σ v0 .
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Outside the pool the velocity vector is

v1 = [sin i, cos i] .

Here i is the incidence angle, i = asin(n sin r). The paths that exit the pool are those with |r| ≤ rmax, where

rmax = asin(1/n). The others reflect. The position optical distance σ ≥ σ1 is therefore

P1 + (σ − σ1)v1 .

In summary:

P (σ) =

{

P0 + σ v0 0 ≤ σ < σ1

P1 + (σ − σ1)v1 σ1 ≤ σ

Once we know how to calculate P (σ) for each ray, we just join together a number of them, all with the same value

of σ, to sketch the wavefront at distance σ.

In summary: the basic technique to use in plotting rays and wave fronts both is to start with P0, v0, and then the
calculate σ1, P1, v1, etc. Here the Pi are the breakpoints of the ray, the vi are the reduced velocities, and σi is the

optical distance from P0 to Pi.

3. An object is placed at x = −7 in front of a hemispherical lens of radius 3 whose centre is (0, 0). Draw the exact
and linear wave fronts at optical distance 4, 5.5, 7, 8.5 from the object by plotting points on the 11 rays at angles
±i/100 radians for 0 ≤ i ≤ 10.

We use the same technique here. The first step is to figure out the points, optical lengths, and reduced velocities

P0, v0, σ1, P1, etc.

The ray starts at point P0 = (−7, 0). with a velocity v0 = [cos θ0, sin θ0], where θ0 here varies over a small range.

The distance to the first hit is the usual formula

s1 = σ1 = −v0 •∆P −
√

(v0 •∆P )2 − ‖∆P‖2 + R2

where ∆P = [−7, 0], R = 3. Then

P1 = P0 + s1v0 .

Let this point be P1 = (−R cosα, R sin α).

At P1 the ray bends down by i − r, where (as explained earlier in the course)

i = θ0 + α, r = asin(sin i/n) .

So we set

θ1 = θ0 − (i − r), v1 = [cos θ1, sin θ1]/n

(reduced velocity).

Finally, let σ2 be the (total) optical distance to the far surface of the lens, hitting at P2, and θ2 be the new direction
exiting. We find σ2 by solving

P1 + (σ2 − σ1)v1 = (0, y), σ2 = σ1 − x1/v1,x .

This gives
P2 = (0, y1 + (σ2 − σ1)v1,y) .

The ray again refracts, changing θ to i, so we set

r = θ1, θ2 = i = asin(n sin r)

and

v2 = [cos θ2, sin θ2] .
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We have

P (σ) =







P0 + σv0 if σ ≤ σ1

P1 + (σ − σ1)v1 if σ1 < σ ≤ σ2

P2 + (σ − σ2)v2 otherwise

In drawing, I did this for the range ±20◦ instead.

4. Horizontal light rays enter a drop of water of radius 1. Draw the wave front at an optical distance of 0.4 from
the point furthest left on the drop. Do this by locating points on 10 rays at heights y = 0, 0.1, . . . 0.9.

Here for the ray starting at height y
x0 = −1

y0 = y

P0 = (x0, y0)

v0 = [1, 0]

x1 = −
√

1 − y2

y1 = y

σ1 = x1 − x0

P1 = (x1, y1)

i = asin(y)

r = asin(y/n)

α1 = π − i

θ1 = −(i − r)

v1 = [cos θ1, sin θ1]/n
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α2 = α1 − (π − 2r)

x2 = cos(α2)

y2 = sin(α2)

σ2 = σ1 + 2n cos(r)

P2 = (x2, y2)

θ2 = θ1 − (π − 2r)

v2 = [cos θ2, sin θ2]/n

α3 = α2 − (π − 2r)

x3 = cos(α3)

y3 = sin(α3)

σ3 = σ2 + 2n cos(r)

P3 = (x3, y3)

θ3 = θ2 − (i − r)

v3 = [cos θ3, sin θ3]

P (σ) =











P0 + σv0 0 ≤ σ < σ1

P1 + σv1 σ1 ≤ σ < σ2

P2 + σv2 σ2 ≤ σ < σ3

P3 + σv3 σ3 ≤ σ
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