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ABSTRACT. A definition and introduction of third order aberrations will be
given. Curvature of field will be explained in more detail which includes a look at
how the Seidel sums explain this aberration.

1 Introduction

An aberration is a deviation from the ideal convergence of rays in a lens system. In the linear
theory developed in class we could show that any point on the right conjugate plane would
focus to a single point on the left conjugate plane for any angle as long as the angle was small
and the y value was close to the axis.

We required the distance to the y axis and the angle to be small in the linear theory because
we didn’t use Snell’s law as stated as

ni sin i = nr sin r, (1)

we took only the first term of the Taylor expansion for sin θ,

sin θ = θ −
θ3

3!
+

θ5

5!
− + · · · (2)

which gave us Snell’s law as
nii = nrr. (3)
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In this talk we will be considering third order aberrations. These are aberrations which come
about when the third order term in the Taylor expansion becomes important in the approxi-
mation due to a larger incidence angle. By taking the first two terms of the Taylor expansion
for sin θ, we have Snell’s law written as

ni

(

i −
i3

6

)

= nr

(

r −
r3

6

)

. (4)

2 Deviation from the ideal spherical surface

One way of looking at aberrations is to consider the optical distance. In the linear theory all
the rays from a point in the object plane are mapped to a single point in the image plane. This
implies that the optical distance traveled by all the rays is the same. The wave front surfaces
will be spherical coming from the point in the object plane and after exiting the lens system
will also be spherical around the point in the image plane to which they all focus. However,
when we compute the exact surfaces, they deviate from the spherical ideal. This is due to the
fact that the optical distances from the object point to the image point are not the same for
all rays traveling through the system according to the exact theory.

The amount of deviation ∆ is a function of the distance from the optical axis and is pa-
rameterized by ∆ = f(C22, C12, C11, C20, C10). Each parameter represents one of the five third
order aberrations which respectively are

1. Spherical

2. Coma

3. Astigmatism

4. Curvature of Field

5. Distortion

3 Overview of the five aberrations

3.1 Spherical aberration

Rays coming from a point source on the axis entering the lens further from the optical axis
focus closer to the lens than rays which enter close to the optical axis. See Figure 1.

2



Figure 1: Spherical aberration which shows that the marginal rays focus closer to the lens than
the central rays.

3.2 Coma

Rays coming from a point source off the axis focus at varying heights on the image plane
depending on where they enter the lens. See Figure 2.

3.3 Astigmatism

Rays coming from a point source off the axis focus in two lines on different surfaces due to the
elliptical shape of the lens for a cone of rays coming from an angle to the lens.

3.4 Curvature of field

Rays coming from off axis points encounter a lens with a shorter focal length than point closer
to the axis which gives rise to curvature of the focal plane. See Figure 4 and Figure 5.
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Figure 2: This figure shows coma as well as spherical aberration. The marginal rays focus lower
due to coma and closer due to spherical aberration. If only coma was involved the marginal
rays would focus on the same plane but at a lower point

Figure 3: This figure shows astigmatism.
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Figure 4: This figure shows how rays coming from different points will focus at different
distances from the lens.

Figure 5: This figure shows an approximation to the curved field of focus by an parabola.
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Figure 6: This figure shows barrel distortion of a grid.

3.5 Distortion

The displacement of rays coming from off axis points which causes variance in the magnification
of the image.

4 The Mathematics

We will now describe the wavefronts as they exit the lens system. Our coordinate system will
have axes x′, y′, and z′. at the image plane. See Figure 7. Define a reference plane to be
(x′

1
, y′

1
) and set it to be the exit pupil. Let P ′ be the image point of P on the image plane and

Q the point on the reference plane on the optical axis. The equation of a sphere with P ′ at
the center and radius P ′Q is

(x′

1
− x′

p)
2 + (y′

1
− y′

p)
2 + z′

1
= r2 (5)

Let ∆ be the function of deviation. Introducing ∆ into (5) gives

(x′

1
− x′

p)
2 + (y′

1
− y′

p)
2 + z′

1
= (r + ∆)2. (6)

We can rewrite (r + ∆)2 as r2 + 2r∆ + ∆2. We can neglect ∆2 by requiring ∆ to be small.
Finally we have

(x′

1
− x′

p)
2 + (y′

1
− y′

p)
2 + z′

1
− r2

− 2r∆ = 0. (7)
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Figure 7: The image plane and the reference plane are shown.

We now have an equation for our wavefront but we still need to find ∆. ∆ will be a function
of the position of Pi and of the position of a point on the wavefront, that is it depends on
x′

p, y′

p, x′

1
and y′

1
. Because we are assuming rotational symmetry, ∆ will only depend on the

combinations of these variables which do not vary when we rotate around the optical axis.
Therefore, convert to polar coordinates in the reference plane and image plane. That gives

x′

p = ρ sin α

y′

p = ρ cos α

x′

1
= r1 sin β

y′

1
= r1 cos β

By an argument of symmetry we have ∆ as a function of only

2u′

1
= x′

p

2
+ y′

p

2
= ρ2 (8)

u′

2
= x′

px
′

1
+ y′

py
′

1
(9)

= r1ρ(sin α sin β + cos α cos β)

= r1ρ cos(β − α)

2u′

3
= x′

1

2
+ y′

1

2
= r2

1
(10)

Since ∆ is complicated we will expand ∆ in a power series up to the quadratic terms. That
gives us

∆ = a0 + b0u
′

1
+ b1u

′

2
+ b2u

′

3
(11)

+
1

2
c0u

′

1

2
+ c1u

′

1
u′

2
+ c2u

′

1
u′

3

+
1

2
c3u

′

2

2
+ c4u

′

2
u′

3
+

1

2
c5u

′

3

2
+ · · ·
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Now we will need to find coefficients ai, bi and ci which will be dependent on the particular
optical system.

We now would like to find the rays, which we know are normal to the wavefront. Recall the
general formula for finding the normal to a point (x′

1
, y′

1
, z′

1
) for a surface f(x′

1
, y′

1
, z′

1
),

x′

1
− x′

∂f

∂x′

1

=
y′

1
− y′

∂f

∂y′

1

=
z′
1
− z′

∂f

∂z′
1

We apply this to equation (7) to get two equations

x′ = x′

p + r
∂∆

∂x′

1

+
z′

z′
1

x′

1
−

z′

z′
1

x′

p −
z′

z′
1

r
∂∆

∂x′

1

(12)

y′ = y′

p + r
∂∆

∂y′

1

+
z′

z′
1

y′

1
−

z′

z′
1

y′

p −
z′

z′
1

r
∂∆

∂y′

1

(13)

Since we have only expanded the power series for ∆ to the quadratic terms we require that x′

p,
y′

p, ∂∆/∂x′, and ∂∆/∂y′ are small. We will be considering points near Pi so z′ is small and z′
1

will be close to r. By dropping terms with a small coefficient and replacing z ′

1
with r we have

x′ = x′

p + z′
x′

1

r
+ r

∂∆

∂x′

1

(14)

y′ = y′

p + z′
y′

1

r
+ r

∂∆

∂y′

1

When we are in the paraxial image plane, z′ = 0 so the term with z′ in equation (14) will
disappear which gives

x′ = x′

p + r
∂∆

∂x′

1

y′ = y′

p + r
∂∆

∂y′

1

. (15)

We now want to write out ∆. The partial derivatives of each u′

i are

∂u′

1

∂x′

1

= 0

∂u′

1

∂y′

1

= 0

∂u′

2

∂x′

1

= x′

p

∂u′

2

∂y′

1

= y′

p

∂u′

3

∂x′

1

= x′

1

∂u′

3

∂y′

1

= y′

1
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Now we can find the partial derivatives of ∆.

∂∆

∂x′

1

= b1x
′

p + b2x
′

1
+ c1u

′

1
x′

p + c2u
′

1
x′

1

+ c3u′

2
x′

1
+ c4u

′

3
x′

p + c5u
′

3
x′

1
(16)

∂∆

∂y′

1

= b1y
′

p + b2y
′

1
+ c1u

′

1
y′

p + c2u
′

1
y′

1

+ c3u′

2
y′

1
+ c4u

′

3
y′

p + c5u
′

3
y′

1
(17)

The coefficients bi can be determined by realizing that when we have a spherical wavefront
when ∆ = 0 so we have

x′ = x′

p + z′
x′

1

r
(18)

y′ = y′

p + z′
y′

1

r

and then by seeing that equation (15) with equations (16) and (17) substituted in should equal
equation (18). This then requires that b1 = 0 and b2 = z′/r2.

We now would like to write the aberration equations with respect to the variables x and y
of the point P in the object plane and x1 and y1 in the entrance pupil rather than the exit
pupil. If we assume the linear theory we can multiply x and y by a constant µ which is the
magnification and we can multiply x1 and y1 by a constant µ1 which is the magnification from
one side of the lens system to the other, from entrance pupil to exit pupil. So our equation
will now be

x′ = µx + C10u1x + C20u1x1 + C11u2x (19)

+ C21u2x1 + C12u3x + C22u3x1

y′ = µy + C10u1y + C20u1y1 + C11u2y (20)

+ C21u2y1 + C12u3y + C22u3y1

where

C10 = rc1µ
3

C20 = rc2µ
2µ1

C11 = rc3µ
2µ1

C21 = C12 = rc4µµ2

1

C22 = rc5µ
3

1

When given a lens system, the values of Ci,j can be determined and tell us what aberrations are
present. Calculating these is outside the scope of this talk, however we can get an understanding
of Field Curvature using this mathematical foundation.
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5 Curvature of field

Curvature of field is closely related to astigmatism so we will consider them together. Assume
that all the coefficients Ci,j are zero except C20 and C11 which are responsible for field curvature
and astigmatism. Take a point in the object plane on the x axis so y = 0. We have

x′
− µx = µ1

x1

r
z′ + C20u1x1 + C11u2x (21)

y′
− µy = µ1

y1

r
z′ + C20u1y1

Let ∆x = x′
− µx and ∆y = y′

− µy these are the differences between the x and y coordinates
of the image point P ′ and the coordinate of the ray. Solve for ∆x and ∆y and change to polar
coordinates.

∆x′ = µ1

z′

r
r1 sin φ +

1

2
C20rρ

2 sin φ + C11rρ
2 sin φ (22)

∆y′ = µ1

z′

r
r1 cos φ +

1

2
C20rρ

2 cos φ

∆x′ = r1

(

µ1

z′

r
+ ρ2

(

1

2
C20 + C11

))

sin φ (23)

∆y′ = r1

(

µ1

z′

r
+

1

2
ρ2C20

)

cos φ

If we square both equations in (23) and add them together after solving for sin2 and cos2 we
get

1 =
∆x′2

r2

1

(

µ1
z′

r
+ ρ2

(

1

2
C20 + C11

))2
(24)

+
∆y′2

r2

1

(

µ1
z′

r
+ 1

2
ρ2C20

)2

The denominators are the lengths of the axes squared. Let

A = r1

(

µ1

z′

r
+ ρ2

(

1

2
C20 + C11

))

(25)

B = r1

(

µ1

z′

r
+

1

2
ρ2C20

)

When A = 0 we have the tangental focal line which is horizontal

z′tangental = −

1

2

r

µ1

ρ2(C20 + 2C11) (26)

and when B = 0 we have the meridional focal line which is vertical

z′meridional = −

1

2

r

µ1

ρ2C20 (27)
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Figure 8: Illustration for curvature of field.

Now, C20 and C11 are also related to the curvature of field. The equation for a triangle inside
a circle (see Figure 8) with the radius as its hypotenuse is

h2 + (z′ − r)2 = r2

We can rewrite this as
h2 + z′2 − 2z′r + r2 = r2

We can approximate and solve for z′ by taking z′2 to be zero to get

z′ =
h2

2r

We can see that the expressions for z′

tangential and z′meridional can be equated to

z′ =
µ2ρ2

2r′

which when solved for curvature, the inverse of the radius, we have

R′

meridional =
1

r′meridional

= −

r

µ2µ2

1

C20 (28)

R′

tangential =
1

r′tangential

= −

r

µ2µ2

1

(C20 + 2C11) (29)

This shows that the curvature is directly proportional to C20 and that the difference in curvature
between the tangential plane and meridional plane is directly proportional to C11. Similar
demonstrations can be done for the other aberrations as well to see how Ci,j change the image
from the ideal.
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