Mathematics 309 - Spring 2004 — Fifth homework

Due Wednesday, March 10.

1. When you look at an object through a piece of flat glass, where does it seem to be (in terms of the thickness of the glass and its index of refraction n)?
2. Place a red object at a depth of one meter under water. Draw on a single page the wave front of light rays at an optical distance of $1 \mathrm{~m}, 1.5 \mathrm{~m}, 2 \mathrm{~m}$., both exact and according to the linear theory. Place the object at the bottom of a page, $5 \mathrm{~cm}=1 \mathrm{~m}$. Find the exact equation of the wave front surface outside the water at optical distance d.
3. An object is placed at $x=-7$ in front of a hemispherical lens of radius 3 whose centre is $(0,0)$. Draw the exact and linear wave fronts at optical distance $4,5.5,7,8.5$ from the object by plotting points on the 11 rays at angles $\pm i / 100$ radians for $0 \leq i \leq 10$.
4. Horizontal light rays enter a drop of water of radius 1 . Draw the wave front at an optical distance of 0.4 from the point furthest left on the drop. Do this by locating points on 10 rays at heights $0,0.1$, ... 0.9.
