In this
case, we have a pair of composition functions working on the
xcoodinate. We resolve this by factoring of the middle terms into f (2x10) + 3 = f [2 (x5) ] + 3. In
this case, we apply the transformation that is furthest in the middle,
which happens to be x+5. This results in a shift of 5 units right. 

Now we
apply the change in the x coordinate scaling by compressing the graph
by 2.
The shape of the curve has changed. 

We apply the last transformation, which is the + 3 that occurs after the function. This shifts the graph a total of 3 units upward  
Here is another comparison of the original graph with the new one. 