[40] 1. Assume that the files which are included in the following program do what they have to do to define the procedures used, and that the procedures behave as expected. In particular assume that the file cubeinc defines the faces of a cube of side 1 , centred at the origin and aligned with the axes. Draw by hand below what the following program produces.

```
%!
72 dup scale
4 translate
/d 5 def
0.01 d div setlinewidth
d dup scale
(matrix3d.inc) run
(draw3d.inc) run
(cube.inc) run
/A[[[0 1 0 0] 45 rotation-matrix-3d [0 -2 d neg] ] def
015
    /i exch def
    /C A cube surface-transform def
    /f C i get def
    f is-visible-in-perspective -
        /p f 0 get def
        newpath
        p 0 get perspective aload pop moveto
        /n p length 1 sub def
        1 1n-
            /i exch def
            p i get perspective aload pop lineto
            " for
            stroke
        " if
" for
```

[40] 2. I include below Euclid's proof of Pythagoras' Theorem. Read it. Then: (1) Finish labelling the points in the diagram just below. (2) On the next page, draw pictures of your own to illustrate what is going on. Use as few labels and words as possible. More credit for more colour. You do not have to follow Euclid exactly, but just explain the main lines of the argument. Think before writing!

Since each of the angles $B A C$ and $B A G$ is right, it follows that with a straight line $B A$, and at the point A on it, the two straight lines $A C$ and $A G$ not lying on the same side make the adjacent angles equal to two right angles, therefore $C A$ is in a straight line with $A G$.

For the same reason $B A$ is also in a straight line with $A H$.
Since the angle $D B C$ equals the angle $F B A$, for each is right, add the angle $A B C$ to each, therefore the whole angle $D B A$ equals the whole angle $F B C$.

Since $D B$ equals $B C$, and $F B$ equals $B A$, the two sides $A B$ and $B D$ equal the two sides $F B$ and $B C$ respectively, and the angle $A B D$ equals the angle $F B C$, therefore the base $A D$ equals the base $F C$, and the triangle $A B D$ equals the triangle $F B C$.
Now the parallelogram $B L$ is double the triangle $A B D$, for they have the same base $B D$ and are in the same parallels $B D$ and $A L$. And the square $G B$ is double the triangle $F B C$, for they again have the same base $F B$ and are in the same parallels $F B$ and $G C$.
Therefore the parallelogram $B L$ also equals the square $G B$.
Similarly, if $A E$ and $B K$ are joined, the parallelogram $C L$ can also be proved equal to the square $H C$. Therefore the whole square $B D E C$ equals the sum of the two squares $G B$ and $H C$.
And the square $B D E C$ is described on $B C$, and the squares $G B$ and $H C$ on $B A$ and $A C$.
Therefore the square on $B C$ equals the sum of the squares on $B A$ and $A C$.
Therefore in right-angled triangles the square on the side opposite the right angle equals the sum of the squares on the sides containing the right angle.
Q.E.D.
\qquad
[40] 3. Write a complete PostScript program to draw the graph of the function $y=x^{3}-1$ for $x=-1$ to $x=1$. Use only basic PostScript commands.
[30] 4. (1) What is the matrix of rotation through 45° around the x-axis, oriented in the direction of positive x ? (2) Of 90° around the axis through the origin and $P=(1,1,0)$, oriented towards P ?

The University of British Columbia
 November 3, 1997
 Mathematics 308
 Section 101
 Instructor: Dr. Casselman

- Be sure that you have 9 pages in addition to this one.
- Put your name below and on the back of the other pages.
- In all questions, you must show work - i.e. display intermediate results - to get full credit.
- This is an open book exam. You may also use a calculator.
- Be neat! I will not attempt to decipher messy calculations or interpret messy pictures.
- All work you wish to be graded must be placed on these sheets. Work books should be used for scrap work only, and must not be handed in. I will simply throw away any other papers I receive.

First Name \qquad Last Name \qquad

Signature \qquad Student Number \qquad

Rules governing examinations

- Each candidate should be prepared to produce upon request his library/AMS card.
- No candidate shall be permitted to enter the examination room after the expiration of one half hour, or to leave during the first half hour of the examination.
- Candidates are not permitted to ask questions of the invigilators, except in cases of supposed errors or ambiguities in examination questions.
- CAUTION - Candidates guilty of any of the following or similar practices shall be immediately dismissed from the examination and shall be liable to disciplinary action.
(a) Making use of any books, papers, or memoranda, other than those authorized by the examiners.
(b) Speaking or communicating with other candidates.
(c) Purposely exposing written papers to the view of other candidates.
- Smoking is not permitted during examinations.

1.	2.	3.	4.	Total
40	40	40	30	150

