
The UBC Java graphics tutorial—a simple interactive applet

In addition to animation, applets can offer you interaction. Very complicated things are possible, but even
simple ones will enable you to make mathematical demonstrations more interesting. Here is a very simple applet
extending the still picture we drew earlier.

package psapplets;

import java.applet.*;

import java.awt.*;

import psplot.*;

import real.*;

class psInteractiveCanvas extends PlotCanvas {

controlNode cn;

RealPoint corner = new RealPoint(0.5, 0.5);

public psInteractiveCanvas(Applet app, int w, int h) {

super(app, w, h);

double ht = 3;

// preserve aspect ratio

double wd = w*(ht/h);

setCorners(-wd, -ht, wd, ht);

cn = new controlNode(this, corner, Color.red);

}

public void draw() {

PlotPath p;

p = new PlotPath(this);

p.moveto(-corner.x, -corner.y);

p.lineto(corner.x, -corner.y);

p.lineto(corner.x, corner.y);

p.lineto(-corner.x, corner.y);

p.close();

p.fill(Color.red);

p.stroke(Color.black);

cn.draw();

}

boolean active = false;

public boolean mouseDown(Event evt, int x, int y) {

// if (x, y) inside a node set mouseState = MouseActive

if (cn.contains(x, y)) {

active = true;

}

return true;

}

public boolean mouseDrag(Event evt, int x, int y) {

if (active) {

RealPoint q = toRealPoint(x, y);

The UBC Java graphics tutorial—a simple interactive applet 2

corner.x = q.x; corner.y = q.y;

cn.locate(q);

repaint();

}

return true;

}

public boolean mouseUp(Event evt, int x, int y) {

// set nodes inactive

active = false;

return true;

}

}

public class psInteractiveApplet extends Applet {

psInteractiveCanvas p;

public void init() {

p = new psInteractiveCanvas(this, bounds().width, bounds().height);

add(p);

show();

}

}

The last part has not changed except for a name or two. The new things are the variable cn and the procedures
referring to mouse actions.

A control node is one of the objects in the psplot package. Graphically, it appears as a rather small square on
the canvas. It is used to respond to certain mouse actions. The line

cn = new controlNode(this, corner, Color.red);

initializes cn. Its image will be located at the upper right corner of the rectangle we are drawing, and its inside
color will be red. The word ‘this’ refers to the canvas we are using it in, so it knows where to draw itself. Note
that in the draw() procedure the control node is drawn last so it isn’t hidden.

The three entirely new procedures here are mouseDown, mouseDrag, mouseUp. These are called automatically
when one of the three types of mouse event occur. The variables x, y are the coordinates of the event, in the
original Java integer coordinate system. The mouseDown procedure just recognizes that the mouse button has
been pressed inside the control node. The mouseDrag event is where the only interesting things occur—basically,
the corner of the figure we are drawing tracks the pressed mouse button as it moves around. This stops when
the button is released. The procedure paint() that is called is defined in the basic class PlotPath to call draw()
and display the picture drawn on the screen.

There is one technical thing—events like these return a boolean variable. If this is false, components in which
the canvas sits may also process the mouse action with their own mouse event procedures. If it returns true, the
processing stops with the canvas.

At this point, in order to understand the psplot and real packages better, you can browse through the API
.html files in their directories. This sort of documentation is easy to make with Java. I have not done a very
thorough job with thisAPI, but it will get better as time proceeds.

