The three-dimensional mkpath package

Here are the routines defined in the file mkpath3d.inc. Roughly speaking, the entire package is concerned with building paths in $3 D$.

```
ROUTINE: mkpath3d
ARGUMENTS: }\quad\ellaf\mp@subsup{t}{0}{}\mp@subsup{t}{f}{}
RETURNS: Adds a sequence of Bezier curves to the current path
```

Here ℓ is the location matrix, of the form $[M v]$ where M is a 3×3 matrix and v a 3 -vector. This is to be interpreted as a rigid affine transformation, describing the shifted position of the path to be drawn. The procedure f is called by name (with /). It has two arguments, an array of parameters and a value of t. Output from f is a three-dimensional parametrization in the format

$$
\left[[x(t) y(t) z(t)]\left[x^{\prime}(t) y^{\prime}(t) z(t)\right]\right]
$$

ROUTINE:	mkpolypath3d
ARGUMENTS:	$\ell a f t_{0} t_{f} N$
RETURNS:	Adds a sequence of line segments to the current path

Is to mkpath3d as mkpolypath is to mkpath.
ROUTINE: mkpolygon3d
ARGUMENTS: A location matrix ℓ, an array of $3 D$ points p
RETURNS: Adds a sequence of line segments to the current path
The array looks like

$$
\left[\left[\begin{array}{lll}
x_{0} & y_{0} & z_{0}
\end{array}\right]\left[\begin{array}{lll}
x_{1} & y_{1} & z_{1}
\end{array}\right] \ldots\left[\begin{array}{lll}
x_{n} & y_{n} & z_{n}
\end{array}\right]\right]
$$

This can be used to draw a cube or faces of some other polyhedron, for example.

```
ROUTINE: use-perspective
ARGUMENTS: None
RETURNS: Sets up use of perspective for rendering 3D to 2D
ROUTINE: use-projection
ARGUMENTS: None
RETURNS: Sets up use of projection
```

Exactly one of these must be used before any three-dimensional drawing is done. If you don't do this, you will get an error message about convert being undefined.

