The matrix package

Here are the routines defined in the file matrix.inc. Roughly speaking, the entire package is concerned with matrix and vector manipulation. Arguments are put onto the stack before the routine is called, and return values are left on the stack at exit. Side effects are described, too.

Vectors in this scheme are simple arrays of numbers. Matrices are arrays of vectors, which are interpreted as the rows of the matrix.

ROUTINE:	vectortranslate
ARGUMENTS:	Two vectors u and v of any length
RETURNS:	The vector $\operatorname{sum} u+v$

The vectors u and v must have the same length.

```
ROUTINE: dotproduct
ARGUMENTS: Two vectors }u\mathrm{ and v}\mathrm{ of any length
RETURNS: The dot product }u\bullet
```

The vectors u and v must have the same length.

ROUTINE:	matrixvector		
ARGUMENTS:	A matrix M and a vector v, of any compatible sizes		
RETURNS:	The product $M v$		
If M is $m \times n$ then v must have length n.			
ROUTINE:	identitymatrix		
ARGUMENTS:	An integer n		
RETURNS:	The $n \times n$ identity matrix I		
ROUTINE:	affinemap		
ARGUMENTS:	$[M u] v$ where M is an $n \times n$ matrix, u and v of dimension n		
RETURNS:	$M v+u$		
ROUTINE:	transpose		
ARGUMENTS:	A matrix A		
RETURNS:	$t A$		
ROUTINE:	matrixmul		
ARGUMENTS:	Two matrices A, B		
RETURNS:	$A B$		
ROUTINE:	vectorlength		
ARGUMENTS:	A vector v		
RETURNS:	$\\|v\\|$		
ROUTINE:	normalized		
ARGUMENTS:	A vector v		
RETURNS:	$v /\\|v\\|$		
ROUTINE:	crossproduct		
ARGUMENTS:	Two 3 -vectors u and v		
RETURNS:	$u \times v$		
ROUTINE:	$3 r o t a t e ~$		
ARGUMENTS:	A 3 -vector α, an angle θ, and a 3 -vector v		
RETURNS:	rotation of v by θ around α		

```
ROUTINE: rotation-matrix
ARGUMENTS: A 3-vector }\alpha\mathrm{ and an angle }
RETURNS: The matrix of the rotation by }0\mathrm{ around }
ROUTINE: vectorscale
ARGUMENTS: A vector v}\mathrm{ and a scalar }
RETURNS: cv
ROUTINE: affineconcat
ARGUMENTS: Two affine transformations [ M M v l ] and [ M M v v ]
RETURNS: The composition of these, in the same format
```

