Mathematics 266 - Spring 1999 - Part II

Chapter 5. Formalities of the Fourier transform

The Fourier transform of a function $f(t)$ defined for all real numbers allows one to resolve $f(t)$ as a 'sum' of simply periodic components. This means we can write

$$
f(t)=\int_{-\infty}^{\infty} \widehat{f}(\omega) e^{2 \pi i \omega t} d \omega
$$

where ω represents the frequency in cycles per unit of t. The function \widehat{f} is called the Fourier transform of $f(t)$, and $f(t)$ is called the inverse Fourier transform of $\widehat{f}(\omega)$.
The formula for \widehat{f} is this:

$$
\widehat{f}(\omega)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi \omega t} d t
$$

Complex calculus can be used to evaluate such integrals. In fact, we have made similar calculations before; all that is new here is the terminology.

Exercise 0.1. Find the inverse Fourier transform of $1 /\left(1+\omega^{2}\right)$; of $1 /\left(1+\omega+\omega^{2}\right)$.
Exercise 0.2. Find the Fourier transform of $f(t)$ where

$$
f(t)= \begin{cases}t & \text { if }|t| \leq R \\ 0 & \text { otherwise }\end{cases}
$$

Exercise 0.3. Find the Fourier transform of $f(t)$ where

$$
f(t)= \begin{cases}e^{c t} & \text { if } t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

and c is a complex number with real part negative.
Exercise 0.4. Find the Fourier transform of $f(t)$ where

$$
f(t)= \begin{cases}t e^{c t} & \text { if } t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

and c is a complex number with real part negative.
Exercise 0.5. Find the Fourier transform of $f(t)=e^{-\pi t^{2}}$. This will require a trick we will discuss in class. Recall that

$$
\int_{-\infty}^{\infty} e^{-\pi t^{2}} d t=1
$$

