Mathematics 266 – Spring 2000 — Section 201

First home work — due Friday, January 14

Exercise 1. Find the gradients of (a) f(x, y) = 1/r; (b) f(x, y, z) = 1/r; (c) $f(x, y) = 1/r^2$. Sketch (a) and (c) on a graph, along with contour lines f = c with c = 1/2, 1, 3/2, 2, 5/2.

Exercise 2. Find the electric field generated by a charge distributed with density 1 along the *z*-axis.

Exercise 3. Find the electric potential for the same problem.

Exercise 4. Let V(x, y) be the 2D vector field (-y, x). (a) Sketch this field. (b) Calculate the corresponding work integral along (a) the radial path from (0,0) to (0,1); (b) the path going from (0,0) first radially to (1,0), then along an arc to (0,1).

Exercise 5. Same problem for V(x, y) = (x, y).

Same problem for V(x, y) = (x, 2y).

Exercise 6. You are traveling along the straight line in the direction [1, 1, 1] with speed 1, starting at (0, -3, 0), through the electric field with PE = 1/r. (a) At what rate is the PE changing when you start? (b) When you are closest to the origin?