Mathematics 266 - Spring 1999 - Part II

Chapter 3. Complex integration

Suppose $f(z)$ to be a complex differentiable function. We want to define for suitable z_{0} and z_{1} an integral

$$
\int_{z_{0}}^{z_{1}} f(z) d z
$$

1. The definition

The basic definition is relatively simple. We choose a parametrized path C from z_{0} to z_{1}, say $t \mapsto z(t)$ with t varying from t_{0} to t_{1}. Then set

$$
\int_{z_{0}}^{z_{1}} f(z) d z=\int_{t_{0}}^{t_{1}} f(z(t)) z^{\prime}(t) d t
$$

This is the same as the limit of finite sums

$$
\sum_{1}^{n} f\left(z_{k}\right)\left(z_{k}-z_{k-1}\right)
$$

as we take finer and finer partitions of the path C into intervals $\left[z_{0}, z_{1}\right]$, etc. and therefore depends only on the curve, not on the particular parametrization. The reason these two definitions agree is that, given the parametrization, the sum is equal to

$$
\sum_{1}^{n} f\left(z\left(t_{k}\right)\right)\left(z\left(t_{k}\right)-z\left(t_{k-1}\right)\right)=\sum_{1}^{n} f\left(z\left(t_{k}\right)\right)\left(\frac{z\left(t_{k}\right)-z\left(t_{k-1}\right)}{t_{k}-t_{k-1}}\right)\left(t_{k}-t_{k-1}\right)
$$

which becomes

$$
\int_{t_{0}}^{t_{1}} f(z(t)) z^{\prime}(t) d t
$$

as the intervals become small.

2. Path independence

In fact, to a large extent this integral depends only on the end points and not even on the curve C.
Suppose that $\alpha(t)$ and $\beta(t)$ are two paths from z_{0} to z_{1}. Suppose that $f(z)$ is defined and complex differentiable in a region including the two paths. Then

$$
\int_{\alpha} f(z) d z=\int_{\beta} f(z) d z
$$

We can put α and β together, with β going backwards, to make a single closed path, going back to its starting point. So another way of saying this is that if γ is a closed path, then

$$
\int_{\gamma} f(z) d z=0
$$

The reasoning explaining this relies on theorems from vector calculus. Recall that if $v(P)=\left[v_{x}(P), y_{y}(P)\right]$ is a vector field and

$$
\gamma: t \mapsto P(t)=(x(t), y(t))
$$

a parametrized path then the circulation of v around the path is

$$
\int_{\gamma}(v \bullet \mathbf{t}) d s=\int_{t_{0}}^{t_{1}} v(P(t)) \bullet[d x(t) / d t, d y(t) / d t] d t=\int_{\gamma} v_{x} d x+v_{y} d y
$$

and by Stokes' Theorem this is also the area integral

$$
\iint_{A}\left(\partial v_{y} / \partial x-\partial v_{x} / \partial y\right) d x d y
$$

if A is the inside of γ.
If $f(z)=X+i Y$ then the complex integral around a closed path γ is

$$
\int_{\gamma}(X+i Y)(d x+i d y)=\int_{\gamma} X d x-Y d y+i \int_{\gamma} Y d x+X d y
$$

By Stokes' Theorem this is the same as the area integral

$$
\int_{A}(\partial Y / \partial x+\partial X / \partial y) d x d y+i \int_{A}(\partial X / \partial x-\partial Y / \partial y) d x d y
$$

Now since the function $f(z)$ is complex differentiable, the matrix

$$
\left[\begin{array}{ll}
\partial X / \partial x & \partial X / \partial y \\
\partial Y / \partial x & \partial Y / \partial y
\end{array}\right]
$$

represents multiplication by a complex number. Therefore the terms in the area integral vanish.

3. Explicit integration

We can even calculate integrals by using this fact:
Suppose $F(z)$ is a complex differentiable function with $F^{\prime}(z)=f(z)$, defined throughout a region containing the chosen path from z_{0} to z_{1}. Then the integral along that path is

$$
\int_{z_{0}}^{z_{1}} f(z) d z=F\left(z_{1}\right)-F\left(z_{0}\right)
$$

We shall see later roughly why this is true.
Exercise 3.1. Find formulas for

$$
\begin{aligned}
& \int_{0}^{w} e^{z} d z \\
& \int_{0}^{w} \cos z d z \\
& \int_{1}^{w} z^{n} d z \quad(n \neq-1)
\end{aligned}
$$

But we have to be very careful. If we take $f(z)=1 / z$ then

$$
\int_{1}^{-1} f(z) d z
$$

can be evaluated by choosing the curve C to be either the lower or upper half of the unit circle.

Exercise 3.2. Carry out the two different calculations of

$$
\int_{1}^{-1} \frac{1}{z} d z
$$

in detail.
Exercise 3.3. Let $f(z)=\left(z^{2}-1\right) / z$. Evaluate

$$
\int_{-1}^{1} f(z) d z
$$

along two different circular arcs.
Exercise 3.4. Why can't we just write

$$
\int_{1}^{w} \frac{1}{z} d z=\log w ?
$$

