
Chapter 14. Systems of weights

In applying Newton’s Law to a large physical structure, we must take the mutual dependence of its components
into account. The differential equations that govern the motion in all circumstances will be extremely complicated,
since how structures respond to stress will be very complicated. In particular, extreme circumstances will lead to
grossly non-linear phenomena such as warping or over-heating. Nonetheless, at least near equilibrium we can
approximate the equations by linear ones, and use matrix algebra to understand the response. This part of the
course is in fact concerned almost exclusively with systems of linear differential equations.

The physical systems we spend time on in this course are relatively simple. It may seem that we are going
to a lot of work for unrealistic examples. The point is that many quite distinct physical systems are modelled
mathematically by the same type of differential equations. The main purpose of looking at the systems we do
look at is to give the mathematics some intuitive content, not to explain realistic physics.

But before we begin the details, we shall look very briefly at a system at once more realistic and only slightly too
complicated to examine more closely—a book shelf. Books sit on top of the shelf and bend it downwards. The
first question you might ask is: Why doesn’t the shelf just fall in under the load? The answer is that as the books
push down upon the shelf the internal structure of the material acts as a network of small (very small!) springs
being stretched. The springs on the top are perhaps compressed, those on the bottom stretched, and the net effect
is to push back up against the load. The shelf stops bending when some sort of equilibrium is reached. Exactly
what shape is reached leads to the first common question about physical systems:

• What is the equilibrium position of the system?

If for some reason the books are bounced up and down on the shelf (or you look instead at a person at the end of
a diving board) you meet the second common question:

• What happens to the system when it is perturbed slightly from equilibrium?

Even a book shelf is quite complicated to analyze. Weights on a spring, which we look at next, make up the
simplest example where the answers are non-trivial, and where typical phenomena occur.

1. Setting up

We are going to generalize the system we looked at earlier, where one weight was hung from a moving support.
In the new situation, we shall hang n weights in a series from n springs, the whole system being suspended from
a moving support.

What are the components of this system? (1) We have the weights with mass mi, which we take to be small blocks
of height hi. (2) We have the springs of length `i and spring constant ki. (3) We have the point of attachment at
the top. Fix a certain base level which we shall say to be at height 0. All other motion will be measured from this
fixed level, measured positively in the downward direction. We want the point of attachment possibly to move
up and down—let d0(t) be its level at time t. It is the motion of this top support which will drive the motion of
the weights.

Let di be the displacement of the top of the i-th weight from the fixed level. Let si be the stretch in the i-th spring
from its relaxed position. According to Hooke’s Law, the force exerted by the spring is then of magnitude kisi

exterted inwards along the spring. There is a simple relationship between the si and the di. The top of the i-th
spring is at displacement di. As we go down from the top of the i-th weight, we traverse first the height hi of the
i-th weight. Then we cover the total extended length of the i + 1-st spring, which is `i+1 + si+1, to get to the top
of the next weight. Therefore

di+1 = si+1 + `i+1 + hi + di .

This works even for i = 0 if we assume an imaginary 0-th weight with no size at all, or h0 = 0.
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On the point at the top of the i-th weight there are three forces: (1) a pull up equal to kisi; (2) the weight mig
pulling down; (3) the pull down of the i + 1-st spring, equal to ki+1si+1 (equal to 0 at the bottom weight). The
only tricky thing here is that the total effect of the weights below the i-th cannot be transmitted except through
the i + 1-st spring. This is an example of a very general principle which asserts that in all of nature forces are
never transmitted instantly at a distance, but must have a mode of transmission. In this example, it is the springs
which transmit the forces.

The total force on the i-weight is
−kisi + mig + ki+1si+1 .

We now want an expression for the force in terms of our coordinates di, or something equivalent to it. We could
substitute for the si in terms of the di directly, but the expressions we get are somewhat messy. We can simplify
things by introducing some new variables. Let di,relaxed be the heights di in the configuration when the springs
are not stretched at all. In this configuration si = 0. Thus

di+1,relaxed = di,relaxed + hi + `i+1 .

If we compare this directly to the previous equation

di+1 = si+1 + `i+1 + hi + di .

and set xi = di − di,relaxed for i ≥ 1 and x0 = d0 (the displacement of the support), we get

di+1 − di+1,relaxed = (di − di,relaxed) + si+1, si+1 = xi+1 − xi .

to get the forces on the i-th weight equal to

Fi = −ki(xi − xi−1) + ki+1(xi+1 − xi) + mig

= kixi−1 − (ki + ki+1)xi + ki+1xi+1 + mig .
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In the equilibrium position, the forces all vanish, and the support has zero displacement from the base level. We
get equations

−k1x1 + k2(x2 − x1) + m1g = 0
−k2(x2 − x1) + k3(x3 − x2) + m2g = 0

. . .

−kn(xn − xn−1) + mng = 0

or
(k1 + k2)x1 − k2x2 = m1g

−k2x1 + (k2 + k3)x2 − k3x3 = m2g

. . .

−knxn−1 + knxn = mng

which turn out to have a relatively simple solution for the equilibrium position.

For example, if n = 2 we get equations

(k1 + k2)x1 − k2x2 = m1g + k1x0

−k2x1 + k2x2 = m2g

If we add these two equations we get
k1x1 = m1g + m2g

from which we can solve for x1, then solve in turn for x2.

From now on, let xi,eq be the values of xi in the equilibrium position.

Exercise 1.1. Solve for the equilibrium values of xi if n = 3. (Hint: add the equilibrium equations up from the
bottom. You get a particularly simple set of equations. Explain this from basic principles.)

Exercise 1.2. Simplify the equations for general n.

Let K be the stiffness matrix 


k1 + k2 −k2 0 . . . 0
−k2 k2 + k3 −k3 . . . 0

. . .
0 0 . . . −kn kn−1




The equilibrium equations become

K




x1

x2

. . .
xn


 =




m1g
m2g
. . .

mng




Exercise 1.3. Write down the equlibrium matrix and the equations for equilibrium for 3 weights on 3 springs.

Exercise 1.4. Find formulas for the equilibrium values of xi when n = 3.

Exercise 1.5. Do an analysis of the situation when the weights are tied down at the bottom by an n + 1-st
spring. In particular, write down the analogue of K .

2. A pair of weights on a spring

Suppose now we consider just a pair of weights, one hanging below the other. This is not only the next simplest
step up from the case of a single weight, but almost all of the phenomena which we meet in large systems already
occur here.
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We shall in this case review what we said in the previous section. We must first analyze forces on the weights,
and then use Newton’s second law to relate these forces to motion.

We shall assume that the springs are not stretched out of shape, so that Hooke’s law holds. Recall that the forces
exerted by a spring are then proportional to the elongation of the spring, and that the constant of proportionality
is called the spring constant.

Let m1 and m2 be the masses of the springs, k0 and k1 the spring constants for each of the springs involved.

Suppose the weights are in any configuration where x0 and x1 are the displacements of the tops of the weights
from the positions where the springs are relaxed. Then the elongation in the first spring is x0, that in the second
x1 − x0. (If both weights are displaced the same distance, there is no stretch in the spring between them.) The
force acting at the top of the first weight is (1) a pull up by the first spring equal to −k0x0; (2) the first weight of
magnitude m1g pulling down; (3) the tension in the second spring k(x1 −x0). (The second weight is transmitted
through the lower spring and does not have to be counted separately.) The total force at the top of the first weight
is therefore

F1 = −k0x0 + m1g + k1(x1 − x0) .

What is the force F2 at the top of the second weight? (1) −k1(x1 − x0) exerted by the lower spring upwards; (2)
the weight m2g downwards. Total:

F2 = −k1(x1 − x0) + m2g .

At equilibrium these forces must vanish. Let xi,eq be the elongations at equilibrium. We get a pair of equations

0 = −k0xeq,0 + m1g + k1(xeq,1 − xeq,0)
0 = −k1(xeq,1 − xeq,0) + m2g

which can be solved, if necessary, for the xi,eq.

If the system is not in equilibrium there will be motion, according to Newton’s law. We get equations

m1x
′′
0 = −k0x0 + m1g + k1(x1 − x0)

m2x
′′
1 = −k1(x1 − x0) + m2g .

Write xi = xeq,i + yi so that yi is the displacement of the weights from equilibrium. If we substitute these
expressions into the equations we get

m1 y′′
0 = −k0[xeq,0 + y0] + m1g + k1([xeq,1 + y1] − [xeq,0 + y0])

m2 y′′
1 = −k1([xeq,1 + y1] − [xeq,0 + y0]) + m2g .

The terms involving the weights and equilibrium positions all cancel out, and we can rewrite these as

m1 y′′
0 = −k0y0 + k1(y1 − y0)

m2 y′′
1 = −k1(y1 − y0)

or
m1 y′′

0 = −(k0 + k1)y0 + k1y1

m2 y′′
1 = k1y0 − k1y1 .

This is a system of second order differential equations in the two unknown functions y0 and y1. The fact that
the right hand side of each equation involves both y0 and y1 means that the two functions y0 and y1 are coupled
to each other. The two weights do not move independently of each other, and it is in fact a bit difficult to imagine
how they do move. At any rate, in this case the equations can be put in matrix form

[
m1 y′′

0

m2 y′′
1

]
=

[−(k0 + k1) k1

k1 −k1

] [
y0

y1

]
.
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We expect the motion of the pair of weights to be a vibration. With what frequencies? If we look for periodic
motion we set

y0 = C0 cosωt, y1 = C1 cosωt

and get
−m1C0ω

2 cosωt = −k0C0 cosωt + k0(C1 cosωt − C0 cosωt)

−m2C1ω
2 cosωt = −k1(C1 cosωt − C0 cosωt) .

This has to hold for all values of t. We can therefore cancel the term cosωt and get

−m1C0ω
2 = −k0C1 + k1(C1 − C0)

−m2C1ω
2 = −k1(C1 − C0)

or
(k0 + k1 − m1ω

2)C0 − k1C1 = 0

−k1C0 + (k1 − m2ω
2)C1 = 0 .

which is a pair of homogeneous linear equations in two unknowns C0 and C1.

We can write it in matrix terms
[

k0 + k1 − m1ω
2 −k1

−k1 k1 − m2ω
2

] [
C0

C1

]
=

[
0
0

]

One solution is just C0 = C1 = 0, but this means there is no motion. If we have any motion at all there will exist
a some non-trivial solution of the pair. Here is the key point, which I recall from linear algebra:

• A pair of homogeneous equations in two unknowns can have a non-trivial solution if and only if the coefficient
matrix is singular, which means that its determinant vanishes.

This imposes a condition on ω. Incidentally, the reason this principle holds is very simple: if the determinant
were not zero then the coefficient matrix would have an inverse, and we could solve the system uniquely.

For the moment, for simplicity, I shall assume that the two masses are the same:

m1 = m2 = m .

The coefficient matrix is then
[

k0 + k1 − mω2 −k1

−k1 k1 − mω2

]
= K − mω2 I

if

K =
[

k0 + k1 −k1

−k1 k1

]
.

The determinant of the coefficient matrix vanishes if and only if

det(K − mω2 I) = 0

which means that mω2 is an eigenvalue of the matrix K . The components (C0, C1) turn out to be the coefficients
of the corresponding eigenvectors, and describe the modes of motion of the system when it is vibrating with a
single frequency.

This is the way it always happens.

• Frequencies of motion of complicated systems and the modes of motion at those frequencies are related
directly to eigenvalues and eigenvectors.
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More generally:

• Solving a system of linear differential equations is roughly equivalent to finding eigenvalues and eigenvectors
of the coefficient matrix.

We shall review eigenvalues and eigenvectors of matrices later on.

Example. Suppose m1 = m2 = 1, k0 = 3, k1 = 2. Set ω2 = λ. The coefficient matrix is

[
5 − λ −2
−2 2 − λ

]
.

The determinant is
(5 − λ)(2 − λ) − 4 = λ2 − 7λ + 6

so we get the equation
λ2 − 7λ + 6 = 0

with solutions
λ = 1, 6

so that the possible frequencies are
ω = 1,

√
6 .

In other words, there are exactly two possible frequencies of motion for the system.

The eigenvectors for 1 and 6 are then [
1
2

]
and

[
2

−1

]
.

We get the motions [
cos t

2 cos t

]
and

[
2 cos

√
6t

− cos
√

6t

]
.

As you can verify, the motions [
sin t

2 sin t

]
and

[
2 sin

√
6t

− sin
√

6t

]
.

are also possible solutions of the system. The system is linear and homogeneous, and any combination of these
will also be possible motions. In fact any possible motion will be such a linear combination

c1

[
cos t

2 cos t

]
+ c2

[
sin t

2 sin t

]
+ c3

[
2 cos

√
6t

− cos
√

6t

]
+ c4

[
2 sin

√
6t

− sin
√

6t

]
.

Any linear combination of the first two has frequency 1 and any linear combination of the second two has
frequency

√
6. An arbitrary solution will therefore be a sum of two motions with very different frequencies, and

its motion will be in general be very complicated. It happens here, for reasons that I will explain a bit later on,
that the eigenvectors here are perpendicular to each other. An interesting consequence of this perpendicularity
is that the energy of any possible motion is the sum of the energies of its two periodic components.

Remark. The pair of equations [
m1 y′′

0

m2 y′′
1

]
=

[−(k0 + k1) k1

k1 −k1

] [
y0

y1

]
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can also be written in matrix form
[

m1 0
0 m2

] [
y′′
0

y′′
1

]
=

[−(k0 + k1) k1

k1 −k1

] [
y0

y1

]

or
My′′ = −Ky

where M is the mass matrix, K the stiffness matrix:

M =
[

m1 0
0 m2

]
, K =

[
(k0 + k1) −k1

−k1 k1 .

]

This can be thought of as a matrix version of Hooke’s law, with matrices M and K replacing the scalars m
and k. In other words, the matrix equation F = −Ky still asserts that stress (force) is proportional to strain
(displacement from equilibrium) but stress and strain here have several different components. The equation
F = My′′ is a matrix version of Newton’s second law, where F is a force with several components.

If we try to find a periodic motion we set y = (cos ωt) y0 where y0 is a constant vector, not identically (0, 0). We
arrive at the matrix equations

(K − ω2M)y0 = 0, det(K − ω2I) = 0 .

If the masses are the same we arrive at the eigenvector/eigenvalue equation as before. Without that assumption we
are looking at generalized eigenvectors and values. Finding them reduces easily to finding ordinary eigenvectors
and eigenvalues.

• In realistic physical systems, finding vibration frequencies amounts to solving a generalized eigenvalue
problem.

The eigenvectors determine the modes of vibration, that is to say the exact way in which different components
will move in purely periodic motion. In practice, this can be very important—if one component of motion is
very large at some particular frequency, it may be overstressed. One aim of good structure design is to control
eigenvalues and eigenvectors so that vibrations of probable frequencies will not stimulate dangerous modes of
motion.

Exercise 2.1. Write down the equations for the vibration frequencies in both cases (n springs, n + 1 springs).
Use the mass matrix which if n = 3 is equal to

M =


m1 0 0

0 m2 0
0 0 m3


 .

Exercise 2.2. Write down the matrices K and M if there are three weights hanging on three springs. If there
are n weights on n springs?

Exercise 2.3. Suppose we have two weights both of mass 1 and that k0 = 2, k1 = 4. What are equilibrium
displacements, if our units are such that g = 1?

Exercise 2.4. Suppose we have two weights both of mass 1 and that k0 = 2, k1 = 4. What are the frequencies
of vibration?

Exercise 2.5. Suppose we have two weights of masses 1 and 2, that k0 = 1, k1 = 3. What are the frequencies
of vibration?

2. Another way to find the differential equations for large systems

We used Newton’s second law applied to each of the weights to obtain the pair of second order differential
equations determining the evolution of the system. It was not too easy to see exactly how forces worked out,
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and for more complicated systems this sort of analysis becomes almost impossible. We can find a formulation of
Newton’s law, however, which uses directly an expression for energy in the system.

For a single weight on a spring there are two sources of potential energy in the system and one of kinetic energy.
(1) The potential energy of the weight itself depends on its height. There is some ambiguity in where we measure
the height from, but potential energy is only defined up to an integration constant anyway. This component
of potential energy we can measure as −mgx where x is displacement (down) from the relaxed position of the
spring. (2) The potential energy in the spring under tension, which is kx2/2. (3) The kinetic energy which is

KE = mv2/2

where v = x′. We know that the potential energy which is

PE = −mgx + kx2/2

takes a minimum value at equilibrium. If we take the derivative with respect to x and set it equal to 0 we get

−mg + kxeq = 0 .

If we are not in equilibrium then x will change in time. Newton’s law F = ma becomes
d

dt

∂ KE
∂v

= −∂ PE
∂x

.

Since
∂ KE
∂v

= mv,
∂ PE
∂x

= −mg + kx

this translates to the same equation we obtained before:

mv′ = mg − kx

= mg − kxeq − k(x − xeq)
my′′ = −ky

where y = x − xeq.

This generalizes in the following way: If we have a system with n degrees of freedom, say where the state is
determined by position variables xi and velocity variables vi then the system of differential equations determining
the evolution of the system is the set

d

dt

∂ KE
∂vi

= − ∂ PE
∂xi

(i = 1 . . . n)

where after calculating partial derivatives we substitute vi = x′
i. Using this is often easier than trying to calculate

forces and use Newton’s law directly. In the special case of an equilibrium solution all velocities are 0 and we
recover the fact that in equilibrium the derivative of potential energy with respect to all position coordinates
vanishes.

In the case of two weights, recall that the coordinates are the displacements of the weights from the positions
where the springs are relaxed. The elongation of the first spring is x0, the second is x1 − x0. The kinetic energy is

KE = m1v
2
1/2 + m2v

2
2/2

and the potential energy is that of the weights and springs separately:

PE = (1/2)k0x
2
0 + (1/2)k1(x1 − x0)2 − m1gx1 − m2gx2 .

We get equations
m1v

′
0 = m1g − m1x0 + m2(x1 − x0)

m2v
′
1 = m2g − m2(x1 − x0)

which agree with what we got before if we let yi = xi −xi,eq and recall that at equilibrium the partial derivatives
of potential energy are 0.

The advantage of this technique is that it is often relatively simple to calculate the energy as a sum of individual
components, even in large systems, where to keep track of how the forces act can be apparently more difficult.

Exercise 2.1. Write down a formula for kinetic and potential energy if there are three weights.


