
Chapter 13. Linear systems

In this chapter we shall look in detail at the relationship between eigenvalues and eigenvectors of matrices, and
the solutions of homogeneous linear systems with constant coefficients. We shall also look at inhomogeneous
systems.

1. Solving systems of differential equations

We begin with a review.

A system of first order differential equations is a set of differential equations involving a number of functions:

y′
1 = f1(t, y1, y2, . . . , yn)

y′
2 = f2(t, y1, y2, . . . , yn)
. . .

y′
n = fn(t, y1, y2, . . . , yn) .

The number of equations will always be the same as the number of unknown functions.

We shall say something later about arbitrary systems of such equations, but for the moment we shall look only at
the simplest kinds, the linear systems. In these, the right hand side are linear functions of the yi, and we shall
in fact assume that the coefficients of the functions yi(t) are constants. The system looks like this:

y′
1 = a1,1y1 + a1,2y2 + · · · + a1,nyn + c1(t)

y′
2 = a2,1y1 + a2,2y2 + · · · + a2,nyn + c2(t)
. . .

y′
n = an,1y1 + an,2y2 + · · · + an,nyn + cn(t) .

If we make up vectors whose coefficients are functions of t

y =




y1(t)
y2(t)
. . .

yn(t)


 , c =




c1(t)
c2(t)
. . .

cn(t)




then we can write the system as
y′ = Ay + c

where
A = [ai,j ] .

We shall first look at the homogeneous case when c = 0.

2. Homogeneous systems of linear differential equations with constant coefficients

We have seen already the basic principle of solving systems of linear differential equations with constant coeffi-
cients, suggested by linearity together with time invariance. To see this from another perspective, we look at the
simplest case

y′ = Ay

where A is diagonal:

A =
[

a1 0
0 a2

]

y =
[

y1(t)
y2(t)

]
.
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The system of differential equations amounts to two equations which are in fact totally independent of each other,
and are said to be decoupled:

y′
1 = a1y1

y′
2 = a2y2 .

We can solve each one separately, without worrying about the other:

y1 = c1e
a1t

y2 = c2e
a2t

where the coefficients c1 and c2 are arbitrary. In vector notation we can write this

y =
[

y1

y2

]
=

[
c1e

a1t

c2e
a2t

]
=

[
c1e

a1t

0

]
+

[
0

c2e
a2t

]
= c1e

a1t

[
1
0

]
+ c2e

a2t

[
0
1

]
.

It turns out that any system of first order differential equations nearly always has a solution looking something
like this. To be precise:

• The solutions of this system satisfy the linearity principle—linear combinations of solutions are again
solutions.

• If
y′ = Ay

is any system of linear equations with A a matrix whose coefficients are constants, then (a) there exists at
least one solution of the form

y = eλtξ

and (b) we can nearly always find numbers λ and vectors ξ such that the solutions to the system are made
up of linear combinations of vector-valued functions of this form.

Finding the possible λ and ξ is simple in principle but often difficult in practice. Suppose that y = eλtξ is a
solution of the system. Then on the one hand because ξ has constant coefficients

y′ = λeλtξ = λy

and on the other
y′ = Ay

and these two expressions for A are compatible precisely when

Aξ = λξ

or, in other words, ξ is an eigenvector for A and λ is its eigenvalue.

Another way to look at this is that we want to choose different coordinates in order to decouple the equations.
The eigenvectors becomes axis vectors in the new system.

Continue with the matrices we looked at earlier.

Example. Let

A =
[

2 1
1 2

]
.

The solutions to the system of differential equations

y′ = Ay
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are in this case

c1e
t

[
1

−1

]
+ c2e

3t

[
1
1

]
.

Example. Let

A =
[

1 −1
1 1

]
.

The solutions to the differential equation are therefore

c1e
(1+i)t

[
1

−i

]
+ c2e

(1−i)t

[
1
i

]
.

We can find solutions with only real coordinates by taking suitable special combinations to obtain the real and
imaginary parts of the basic solution. If we take c1 = 1/2, c2 = 1/2 then we obtain the real part, and if we take
c1 = 1/2i, c2 = −1/2i we obtain its imaginary part. Therefore we also have solutions

e(1+i)t

[
1

−i

]
= et(cos t + i sin t)

[
1

−i

]
=

[
et cos t + iet sin t
et sin t − iet cos t

]

which are

et

[
cos t
sin t

]
, et

[
sin t

− cos t

]

Example. Let

A =
[

1 1
0 1

]

The characteristic polynomial is
λ2 − 2λ + 1 = 0 .

Here there is only one eigenvalue λ = 1 with eigenvector

ξ =
[

1
0

]
.

We get from this a solution

et

[
1
0

]
.

How do we get another?

This case is somewhat analogous to what happens for second order equations when the characteristic polynomial
has two roots. It urns out that there exists a solution of the form

y = tetξ + etη .

Then
y′ = etξ + tetξ + etη

and if this is to be equal to Ay we must have

A(tξ + η) = ξ + tξ + η
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and if we compare terms we must have
Aξ = ξ, Aη = ξ + η .

Given A, we can go the other way. First we choose ξ to be an eigenvector, and then we solve

(A − I)η = ξ

to find η. If

ξ =
[

1
0

]

then we have to solve the system [
0 1
0 0

] [
x
y

]
=

[
1
0

]

which leads to the condition y = 1. The value of x is arbitrary. We can set it equal to 0. This gives

η =
[

0
1

]

so the extra solution is

tet

[
1
0

]
+ et

[
0
1

]
=

[
tet

et

]

Let’s summarize what can happen for a 2 × 2 system.

• When the eigenvalues of A are real and distinct, the solutions of the system are the linear combinations

c1e
λ1tξ1 + c2e

λ2tξ2 .

• When A has a complex eigenvalue λ and complex eigenvector ξ we get as real solutions the real and imaginary
parts of

eλtξ

where we calculate eλt using Euler’s equation

ea+ib = ea(cos b + i sin b) .

• When A has a single eigenvalue and only a single line of eigenvectors we get one solution

eλtξ

where ξ is an eigenvector and another solution

teλtξ + eλtη

where
(A − λI)η = ξ .

Exercise 2.1. Find the general solution of the systems
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y′ =
[

1 1
4 1

]
y

y′ =
[

3 −2
2 −2

]
y

y′ =
[

5 −1
3 1

]
y

y′ =
[

1 2
−5 −1

]
y

y′ =
[

4 −2
8 −4

]
y

y′ =


 0 1 1

1 0 1
1 1 0


 y

Exercise 2.2. A certain electric circuit is described by the equations

d

dt

[
I
V

]
=




0 1
L

− 1
C

− 1
RC




[
I
V

]

Suppose R = 1 ohm, C = 1/2 farad, L = 1 henry. Find the general solution of the system.

3. Reducing any system to one of first order

We have looked so far only at systems of first order equations in detail, but these are not always what the laws of
physics give us directly. This is not a serious problem, since in fact

• Any system of differential equations can be transformed into a possibly larger one of first order.

Rather than explain completely, I will explain how to do this in the simplest case.

Suppose we are given a linear second order differential equation

y′′ + ay′ + by = c(t) .

Physically, y will often represent position. Let v be y′, which will then represent velocity. The equation above can
be rewritten in two parts

y′ = v

v′ = y′′

= −av − by + c(t) .

But the first and last equations make up a system of two equations of first order.

• A single equation of second order can be transformed to two of first order.

• A system of two equations of second order can be transformed to a system of four equations of first order.

• A single equation of any order n can be transformed into n equations of first order.
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This means that if we understand how to solve systems of first order equations then we know how to deal with all
systems of any order. There are other ways to use this trick, for example in generalizing our numerical methods
of solution to higher order equations without trouble.

Exercise 3.1. Write down the first order system corresponding to the pendulum equation

my′′ + cy′ + g sin(y/`) = F (t) .

4. Initial conditions in systems

Solving for initial conditions in systems of linear differential equations involves solving systems of algebraic
linear equations, just as it did for second order linear equations.

The main theoretical result is that any system of linear differential equations

y′ = Ay

has a unique solution with a specified value at an arbitrary value of t.

Example. We are going to find the unique solution of

y′ = Ay, y(0) =
[

1
0

]

where

A =
[

2 1
1 2

]
.

The general solution, as we have just seen, is in this case

c1e
t

[
1

−1

]
+ c2e

3t

[
1
1

]
.

Now we have to find explicit values for c1 and c2. We set t = 0 and calculate

y(0) = c1

[
1

−1

]
+ c2

[
1
1

]
=

[
c1

−c1

]
+

[
c2

c2

]
=

[
c1 + c2

−c1 + c2

]

so that we have to solve the system of algebraic equations

c1 + c2 = 1
−c1 + c2 = 0

which gives
c1 = 1/2
c2 = 1/2 .

Exercise 4.1. For each of the following systems, find the solution with initial conditions (1, 0). Then (0, 1).

y′ =
[

1 1
4 1

]
y
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y′ =
[

3 −2
2 −2

]
y

y′ =
[

5 −1
3 1

]
y

y′ =
[

1 2
−5 −1

]
y

y′ =
[

4 −2
8 −4

]
y

y′ =


 0 1 1

1 0 1
1 1 0


 y

5. Inhomogeneous linear systems

There are several methods to solve linear inhomogeneous systems

y′ = Ay + g(t)

where g(t) is a vector of functions

g(t) =
[

gx(t)
gy(t)

]
.

Among them is a formula which generalizes the ones we have seen to solve first and second order linear inhomo-
geneous systems. The starting point is that we assume we know how to solve the corresponding homogeneous
system (with g = 0). Suppose that y1(t) and y2(t) are two independent homogeneous solutions (so these also are
vectors with functions as coefficients). Let Ψ(t) be the 2 × 2 matrix whose columns are the solutions y1(t), y2(t).
Then the general solution to the inhomogeneous system is

c1y1(t) + c2y2(t) + Ψ(t)
∫ t

Ψ(s)−1g(s) ds

The first two terms form the general solution to the homogeneous system. It can be written as a matrix product

Ψ(t)
[

c1

c2

]
.

The integrand Ψ(s)−1g(s) is the product of a 2× 2 matrix and a column vector, hence another column vector. All
these have coefficients which are functions of s, and are usually messy to deal with. At any rate the meaning of
the integral is the column vector whose coefficients are the integrals of the coefficients of Ψ(s)−1g(s).

This formula is somewhat similar to the ones we have seen before for first order and second order linear equations.
In fact, those earlier formulas are essentially a special case of this one.

It has a version with definite integrals, too. The solution of the inhomogeneous system with initial conditions
(0, 0) is

Ψ(t)
∫ t

0

Ψ(s)−1g(s) ds
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Example. If

A =
[−2 1

1 −2

]

then

y1 =
[

e−3t

−e−3t

]
, y2(t) =

[
e−t

e−t

]

so

Ψ(t) =
[

e−3t e−t

−e−3t e−t

]

Ψ(s)−1 =
e4s

2

[
e−s −e−s

e−3s e−3s

]

=
1
2

[
e3s −e3s

es es

]
.

Let

g(t) =
[

1
3

]

Then

Ψ−1(s)g(s) =
1
2

[
e3s −e3s

es es

] [
1
3

]
=

[−e3s

2es

]

and the integral component in the formula gives

[
e−3t e−t

−e−3t e−t

] ∫ t [−e3s

2es

]
ds =

[
e−3t e−t

−e−3t e−t

] [− e3t/3
2et

]
=

[
5/3
7/3

]
.

Exercise 5.1. For each of the following A

A =
[

1 1
4 1

]

A =
[

3 −2
2 −2

]

A =
[

5 −1
3 1

]

A =
[

1 2
−5 −1

]

A =
[

4 −2
8 −4

]

find the general solution of the systems
y′ = Ay + g(t)

where

g(t) =
[

1
−3

]
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Exercise 5.2. Where

g(t) =
[

cos t
sin t

]

6. Inhomogeneous systems and eigenvector decomposition

The formula in the previous section always works, but it is hardly ever the most efficient way to solve inhomo-
geneous systems. There is one case, in particular, when something much quicker is available. That is when

g(t) = ectg0

where g0 is a constant vector and c is not an eigenvalue of A. In this case there is a solution

y(t) = ecty0

where y0 is a constant vector also. If we look for a solution of this form we find

y′(t) = cecty0

y′ − Ay = cecty0 − Aecty0

= −(A − cI)ecty0

and solve
−(A − cI)ecty0 = ectg0

−(A − cI)y0 = g0

y0 = −(A − cI)−1g0 .

Note that in order for this formula to work, c cannot be an eigenvalue of A. This method is most often used when
the exponential is periodic (and c = iω).

Example. Try this on the example in the previous section where c = 0.

Example. Solve

y′ =
[−2 1

1 −2

]
y +

[
cos t
sin t

]

We first write the vector (cos t, sin t) in a way involving complex exponentials. A general fact will be useful here.
It follows from Euler’s formula by a simple multiplication .

• A cos ct + B sin ct is the real part of (A − iB)eict.

Therefore [
cos t
sin t

]

is the real part of

eit

[
1

−i

]
.
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The eigenvalues of A are −1 and −3, which are different from i, so for the simple solution we set

y(t) = real part of eity0

y0 = −(A − i)−1

[
1

−i

]
=

[−2 − i 1
1 −2 − i

]−1 [−1
i

]

y0 =
1

(2 + i)2 − 1

[−2 − i −1
−1 −2 − i

] [−1
i

]

y0 =
1

2 + 4i

[
2

2 − 2i

]
=

1
1 + 2i

[
1

1 − i

]
=

1 − 2i

5

[
1

1 − i

]
=

1
5

[
1 − 2i

−1 − 3i

]

y(t) = real part of
1
5

[
1 − 2i

−1 − 3i

]
eit

y(t) = real part of
1
5

[
1 − 2i

−1 − 3i

]
(cos t + i sin t)

=
1
5

[
cos t + 2 sin t

− cos t + 3 sin t

]
.

To get the general solution, we add the general solution of the homogeneous system to this.

7. Resonance for systems

The general solution of the 2 × 2 system
y′ = Ay + eiωtg0

is
y = c1y1 + c2y2 − eiωt(A − iω)−1g0

where the first two terms make up the general solution to the homogeneous system

y′ = Ay .

In most physical systems, energy considerations require that the solutions to the homogeneous system decay
rather than grow with time. This means that the real components of the eigenvalues of A are negative or, just
conceivably, 0. If they are negative the solutions to the homogeneous equation all die out exponentially, and the
first part of the solution is called its transient component, the second the steady state.

To understand the steady state solution, we express the vector g0 in terms of the eigenvectors of A. For simplicity,
we will assume that A has two independent eigenvectors, so that we can always do this. Thus we write

g0 = ξ1 + ξ2

where ξi is an eigenvector of A, say with eigenvalue λk. Then

(A − iω)−1g0 = (A − iω)−1(ξ1 + ξ2)

= (A − iω)−1ξ1 + (A − iω)−1ξ2

=
ξ1

λ1 − iω
+

ξ2

λ2 − iω

The steady state solution is therefore

eiωt
[ −ξ1

λ1 − iω
+

−ξ2

λ2 − iω

]
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It has two components. The magnitude of one of these will be very large if iω lies close to one of the eigenvalues
λk. In the case where energy is conserved in the system, one of the eigenvalues will be ±λi, and when ω is near
λ the steady state response amplifies drastically.

The coefficient y0 of eiωt is

y0 =
−ξ1

λ1 − iω
+

−ξ2

λ2 − iω

is a two-dimensional complex vector. We know that if z = x + iy is a complex number then

|z| =
√

zz =
√

(x + iy)(x − iy) =
√

x2 + y2

is a measure of its magnitude. If

z =
[

z1

z2

]

is a complex vector then
‖z‖ =

√
|z1|2 + |z2|2 =

√
z1z1 + z2z2

is defined to be its magnitude. In understanding the response of the system to various kinds of input we are
interested in how the magnitude of y0 changes with ω. Resonance of some kind occurs when this plot has a
distinct maximum. If you consider all the possibilities, you can see that a real resonance can occur only when the
eigenvalues are conjugate complex numbers and the number iω lies close to one of them.

Example. Let’s look at a new electric circuit:

L

C

R1

V (t)

R2

Figure 7.1. An electric circuit with voltage source.

I remind you of the defining properties of the various components.

Type of element Defining property

Resistor V = RI (Ohm’s Law)
Inductor V = LI ′

Capacitor Q = CV
I = CV ′

Independent voltage source V = V (t) is specified as a function of time

Let V be the voltage drop across the capacitor, I the current through the coil.
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Kirchhoff’s Laws tell us
−I1 + I − IC = 0

I1 = I − IC

= I − CV ′

V = −LI ′ − R2I

= V (t) + R1I1

= V (t) + R1(I − CV ′)
= V (t) + R1I − R1CV ′

from which we get the inhomogeneous system

I ′ = − 1
L

V − R2

L
I

V ′ = − 1
R1C

V +
1
C

I +
1

R1C
V (t)

or in matrix form [
V
I

]′
=


− 1

R1C
1
C

− 1
L

−R2

C




[
V
I

]
+




1
R1C

V (t)

0


 .

Set L = C = R1 = R2 = 1, V (t) = cosωt. The system becomes

[
V
I

]′
=

[−1 1
−1 −1

] [
V
I

]
+

[
cosωt

0

]

and the characteristic polynomial is
λ2 + 2λ + 2 = 0

with roots −1 ± i. The corresponding eigenvectors are

[
1

±i

]

and we can write [
1
0

]
=

1
2

([
1
i

]
+

[
1

−i

])
.

Since the eigenvalues have negative real part, the solutions to the homogeneous are transient, and the steady
state solution is the real part of

−eiωt

2

(
1

−1 + i − iω

[
1
i

]
+

1
−1 − i − iω

[
1

−i

])
.

The coefficient y0 of eiωt is

y0 = −1
2

(
1

−1 + i − iω

[
1
i

]
+

1
−1 − i − iω

[
1

−i

])

which is a two-dimensional complex vector. We are interested in its magnitude. The coordinates of y0 can be
calculated explicitly but the expression you get is rather messy and not illuminating. It is easier to write a program
to calculate its magnitude as a function of ω over a reasonable range of values of ω, than it is to do by hand.
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Figure 7.2. Resonance in a system with two degrees of freedom.

The resonance is rather weak.

A system of size n × n can have up to n/2 resonances.

8. Eigenvalues and eigenvectors for larger matrices

The main difference between the 2 × 2 case and that of larger systems is the amount of work involved in finding
eigenvalues and eigenvectors. There are also many different cases analogous to the single unusual case for
2 × 2 matrices when there do not exist linearly independent eigenvectors. The most important case, however, is
when the matrix is symmetric, in which case there are relatively few problems beyond the difficulty of finding
eigenvalues and eigenvalues. This is a job for computers.

9. Why linear systems are ubiquitous

Why are linear systems so common? It is for a purely mathematical reason. We have seen that for two weights on a
spring, the potential energy of the system is that stored in the displacement of the weights away from equilibrium.
This energy is stored in the stretched springs, and (up to a constant related to energy in the equilibrium position
itself) is given by the expression

(1/2)[k0y
2
0 + k1(y1 − y0)2]

where yi is displacement away from equilibrium. This can be rewritten as

(1/2)[(k0 + k1)y2
0 − 2k1y0y1 + k1y

2
1 ] .

It is a quadratic expression in y0 and y1. Now for any physical system in equilibrium whatsoever, potential
energy is at a minimum. This means, by calculus, that the first derivatives of potential energy with respect to the
displacement variables vanish. This in turn means that the Taylor series for potential energy must start off

P0 + quadratic terms + higher order terms

and is therefore well approximated by the expression

P0 + quadratic terms

near equilibrium. If we assume that friction is negligible, then for a physical system of this kind we have
Lagrange’s form of Newton’s law in terms of energy—the system of differential equations

d

dt

∂ KE
∂vi

= −∂ PE
∂xi

.

The left hand side is often a purely quadratic expression in velocities. If the right hand side is a quadratic
expression in position variables, then the system of differential equations we get will be linear. In other words

• It is because potential energy is at a minimum for physical systems in equilibrium that the behaviour of those
systems near equilibrium is approximated by sets of linear differential equations.


