
Chapter 12. Review of eigenvalues and eigenvectors

It will be as short as possible.

1. General review

If A is a matrix, an eigenvector of A is a vector ξ which is (a) not the zero vector and (b) taken into a multiple of
itself through left multiplication by A:

Aξ = λξ

for some constant λ. This equation can be rewritten as

(A − λI)ξ = 0

where I is the identity matrix of the same size as A. Say A has size n × n. Then this equation amounts to n
equations in the n unknown coordinates of ξ. In general, n linear equations in n unknowns will have exactly
one solution. In this case, the system certainly has the zero vector as a possible candidate for ξ, but the definition
of eigenvector doesn’t allow that candidate. In fact, λ will be an eigenvalue for A precisely when the system
of equations with coefficient matrix A − λI has more than one solution. This happens when A − λI is not an
invertible matrix, or when

det(A − λI) = 0

which is to say that the matrix A − λI is singular. The determinant det(A − λI) is a polynomial in the variable
λ of degree n. It is called the characteristic polynomial of A.

• The eigenvalues of A are the roots of the characteristic polynomial of A.

• If λ is an eigenvalue of A then the eigenvectors for this eigenvalue are the solutions of the singular system
of equations

(A − λI)ξ = 0

other than the zero vector.

2. Two by two matrices

Suppose

A =
[

a b
c d

]

Then

A − λI =
[

a b
c d

]
−

[
λ 0
0 λ

]
=

[
a − λ b

c d − λ

]

and its characteristic polynomial is

(a − λ)(d − λ) − bc = λ2 − λ(a + d) + (ad − bc) = λ2 − λ trace(A) + det(A)

where the trace of A is the sum a + d of its diagonal entries.

Example.

Let

A =
[

2 1
1 2

]
.
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Its characteristic polynomial is
λ2 − 4λ + 3

and its eigenvalues are λ1 = 1, λ2 = 3. For λ = 1 we have

A − λI = A − I =
[

1 1
1 1

]

and the system of eigenvector equations (A − λI)ξ = 0 becomes

x + y = 0
x + y = 0 .

These two equations are the same, or in other words the system is redundant. This is essentially what has to
happen, because for an eigenvalue the system must be singular. At any rate, the eigenvectors for λ = 1 are the
points on the line y = −x (except for (0, 0)). All are multiples of the single vector

ξ1 =
[

1
−1

]
.

For λ = 3 the eigenvector equations are
−x + y = 0

x − y = 0

which are again redundant. The eigenvectors for λ = 3 are multiples of

ξ2 =
[

1
1

]
.

Notice that the matrix A is symmetric. The orthogonality of the eigenvectors is consistent with a claim in another
section.

Example.

Let

A =
[

1 −1
1 1

]
.

Its characteristic polynomial is
λ2 + 2λ + 2 = 0

with roots
λ = 1 ± i .

The eigenvector equations for 1 + i is
−ix − y = 0

x − iy = 0 .

These are redundant since the second is i times the first. We have

ξ1 =
[

1
−i

]
.
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In this case, we do not have to deal separately with the other eigenvalue, since it is the complex conjugate of
the first. We take as eigenvector the conjugate of the first eigenvector

ξ2 =
[

1
i

]
.

If A is an arbitrary 2 × 2 matrix then there are essentially three ways in which the eigenvalues and eigenvectors
of A can behave. • The eigenvalues are real and we can find two linearly independent eigenvectors. • The
eigenvalues are conjugate complex numbers, and we can find conjugate complex eigenvectors as well. • There
is an exceptional case also, in which A has just one eigenvalue—real—but also only a single line of eigenvectors.
We shall see later to what extent we need to understand this case. Here I only mention that

A =
[

1 1
0 1

]

is an example.

Exercise 2.1. Find eigenvalues and eigenvectors for

[−5 4
4 −6

]
.

Exercise 2.2. Find eigenvalues and eigenvectors of

[−a a
a −a

]
.

Exercise 2.3. Find eigenvaluesa nd eigenvectors of

[
cosA − sinA
sin A cosA

]
.

Exercise 2.4. Find eigenvalues and eigenvectors of

[
c 1
0 c

]
.

3. Symmetric matrices

Eigenvalues of arbitrary matrices can be complex numbers, and a number of exceptional phenomena can occur in
relating eigenvalues to eigenvectors. There is one general circumstance, however, in which things are relatively
simple. Recall that a matrix is symmetric if it is equal to its own transpose. If A is a symmetric matrix then its
eigenvalues are always all real, and we can find a set of eigenvectors which are all orthogonal, and as many of
them as dimensions to the vectors involved. This happens often with physical systems, as it did with the system
of weights on springs, where the matrix K was symmetric.

These facts about symmetric matrices are so important that I shall review them here. We shall do this for arbitrary
n×n symmetric matrices. The starting point is to understand how dot products and matrix multiplication relate
to each other.
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If

u =




u1

u2

. . .
un


 , v =




v1

v2

. . .
vn




are two n-dimensional vectors then their dot product is the sum

u • v = u1v1 + u2v2 + · · ·unvn .

• The dot product of two column vectors u and v is the same as the matrix product

tu v = [ u1 u2 . . . un ]




v1

v2

. . .
vn


 .

• If M is any n × n matrix then
Mu • v = u • tMv .

The first claim is a simple observation. The second follows from it, since we have

Mu • v = t(Mu) v = tu tM v = u • tMv .

The main consequence for us is:

• If M is any n × n symmetric matrix then

Mu • v = u •Mv .

• The eigenvalues of any real symmetric matrix are all real. If λ1 6= λ2 are distinct eigenvalues for eigenvectors
ξ1 and ξ2 then ξ1 • ξ2 = 0.

We shall need a simple fact about complex numbers. If z = x + iy then its conjugate is z = x − iy and

zz = (x + iy)(x − iy) = x2 + y2 ≥ 0 .

This cannot be 0 unless z = 0. If v is a complex vector then the dot product of v and v is

v • v = v1v1 + v2v2 + · · · + vnvn .

Each term in this sum is non-negative and therefore the sum can be 0 only if all vi = 0.

If M is a (real) symmetric matrix and Mv = λv then we also have Mv = λv and

Mv • v = λv • v

= λ (v • v)
= v •Mv

= v •λv

= λ (v • v) .
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But then
(λ − λ) v • v = 0

If v is an eigenvector then by definition v 6= 0 so v • v 6= 0. Therefore λ = λ which means that λ is real.

If Mv1 = λ1v1 and Mv2 = λ2v2 with λ1 6= λ2 then

Mv1 • v2 = λ1 (v1 • v2)
= v1 •Mv2

= λ2 (v1 • v2)

and since the λi are different, we must have v1 • v2 = 0.

If all the eigenvalues of a symmetric n × n matrix M are distinct, then this result implies that we can find n
eigenvectors vi, all perpendicular to each other, none of course 0. But even without the assumption of distinctness,
a little care will give us the same result.

• If M is an n×n symmetric matrix then we can find a set of n eigenvectors vi for M with vi • vj = 0 for i 6= j.

If v is any n dimensional vector, we can then write

v =
∑

cici, ci =
v • vi

vi • vi
.


