
Chapter 18. Remarks on partial differential equations

If we try to analyze heat flow or vibration in a continuous system such as a building or an airplane, we arrive at
a kind of infinite system of ordinary differential equations. In fact, nearly all physical systems one usually wants
to understand are essentially continuous in nature, resembling systems with an infinite number of components—
for example, an electric field in empty space, or large physical structures like an aircraft fuselage or a large
bridge. In these cases one can often approximate them by systems of finite if large dimension, but the underlying
mathematics is more accurately expressed in terms of partial rather than ordinary differential equations. In this
course we shall concentrate on demonstrating with relatively simple models what basic phenomena one expects
to meet, rather than try to explain how realistic systems are dealt with. There are three basic types traditionally of
interest to engineers. The first is related to how heat flows in complicated physical bodies; the second is related
to equilibrium temperature distributions and equilibrium configurations of physical systems in general; the third
is related to how waves travel in physical media. Real physical systems are complicated enough that one has to
use a computer to understand what happens, but the models we construct will show us essentials.

The two main tools we shall use are Fourier series and variants, and a technique of solving partial differential
equations called separation of variables.

1. Three cooling rooms

Before we look at a new type of physical system, we shall look more closely at a type only slightly more complicated
than those we have looked at before. Some of the phenomena we want to understand appear here in a simple
way.

Suppose we are considering three rooms A, B, and C, with A and C exposed to an outside environment of 0◦

but B in between them only exposed to A and C.

A B C

Suppose also that all relaxation times τA, τC , τAB , and τBC are equal to 1. Then the evolution in time of
temperature is controlled by the system of differential equations

θ′A = − 1
τA

θA − 1
τAB

(θA − θB)

θ′B = − 1
τAB

(θB − θC) − 1
τBC

(τB − τC)

θ′C = − 1
τC

θC − 1
τBC

(θC − θB)

or

θ′ =


−2 1 0

1 −2 1
0 1 −2


 θ, θ =


 θA

θB

θC


 .

Since we have fixed the outside temperature at 0◦, this is a homogeneous system. In order to solve the system,
we must find the eigenvalues and eigenvectors of the matrix

A =


−2 1 0

1 −2 1
0 1 −2


 .
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Its characteristic polynomial is
λ3 + 6λ2 + 10λ + 4 = 0

Trying out various small integers, we find that λ = −2 is a root. This polynomial factors as

(λ + 2)(λ2 + 4λ + 2)

and therefore the other two roots are
−2 ±

√
2 .

The corresponding eigenvectors are (in order of the magnitude of the eigenvalues)


 1√

2
1


 (λ = −2 +

√
2),


 1

0
−1


 (λ = −2),


 1
−√

2
1


 (λ = −2 −√

2) .

The general solution of the system is hence

c1e
(−2+

√
2)t


 1√

2
1


 + c2e

−2t


 1

0
−1


 + c3e

(−2−√
2)t


 1
−√

2
1


 .

Let’s now suppose that the initial temperatures are all equal to 20◦:

θA = θB = θC = 20 .

Then we must solve

c1


 1√

2
1


 + c2


 1

0
−1


 + c3


 1
−√

2
1


 =


 20

20
20




or
c1 + c2 + c3 = 20

c1

√
2 − c3

√
2 = 20

c1 − c2 + c3 = 20
2c1 + 2c3 = 40

c2 = 0
c1 = 10 + 5

√
2

c3 = 10 − 5
√

2

leading to the solution


 θA

θB

θC


 = (10 + 5

√
2)e(−2+

√
2)t


 1√

2
1


 + (10 − 5

√
2)e(−2−√

2)t


 1
−√

2
1


 .

In order to understand this, I use bar graphs below to illustrate how the temperature of the three rooms changes
as time goes on. Eventually, of course, all the rooms will cool off towards the outside temperature. In each case,
the temperature is a sum of two terms, one for each of the contributing eigenvalues, and these terms are also
indicated.
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t = 0 t = 0.5 t = 1

The important thing to realize is that although both terms decrease exponentially, one decreases much more
rapidly than the other. This is because e(−2−√

2)t ∼ e−3.4t will be much much smaller than e(−2+
√

2)t ∼ e−0.6t

for even moderate values of t. Not only do both terms get small with time, but the difference between the two
terms gets small even more rapidly. In effect, after a short time the temperature of each room decays at the
same essentially exponential rate. In other words, Newton’s Law of Cooling for the system as a whole should be
considered as an asymptotic approximation to a more complicated situation for moderate and large values of t.

Another important thing to see is that each of the terms in the expression for θ corresponds to a separate mode
of decay, each mode decaying at its own exponential rate. The rate in a mode is determined by an eigenvalue,
and the temperature distribution in a mode is determined by the corresponding eigenvector. In other words,
the evolution of the system in time brings out the latent modes in the initial temperature distribution among the
rooms.

Exercise 1.1. uppose rooms A and B start off at 20◦ while room C starts off at 0◦. Find a formula for the
temperatures of all three rooms as a function of t.

2. The transition from large finite systems to infinite ones

The partial differential equations we shall see are just analogues of systems of ordinary equations we have already
seen. In this section we shall see how this works in one example.

Suppose we want to analyze heat flow in a long metallic bar. Suppose that the bar is of length `, and that it is
insulated completely along its sides, so that the only way in which heat can flow in or out of it is through its ends.
We further assume that at the ends of the bar heat conduction is extremely efficient, so that in effect the ends of
the bar have exactly the same temperature as their environment. A typical question might be this: Suppose that
the bar is heated to 100◦ and then placed in a room at 0◦. What is the temperature at the centre at time t? In
these circumstances, temperature inside the bar will be constant in a cross-section, hence a function of the single
variable x which varies from 0 at one end to ` at the other. In the next chapter we shall analyze this situation in
more detail, but here we want to try to understand what is going on through some kind of approximation. We
divide the bar into a large number of chambers, and apply Newton’s law of cooling to this collection, as though
each chamber behaved as a simple object. If there are n chambers in all, then the length of each chamber will be
h = `/n, and we have to look at temperatures u1, u2, . . . , un where ui is the temperature in the i-th chamber.



Remarks on partial differential equations 4

x = 0 x = `

u1 u2 un

We apply Newton’s law of cooling. The chambers at the ends lose heat to the environment, but all other heat
transfer takes place between two neighbouring chambers. We shall assume that the bar is uniform, which means
here that different chambers have exactly the same cooling properties. We are assuming that heat transfer at the
ends is completely efficient, which means here that u1 = 0, and un = 0. Otherwise, let τh be the relaxation time
of cooling between neighbouring chambers. The subscript h is to remind us that smaller objects cool faster than
large ones, so that τ will depend on the size of the chambers. Then Newton’s law gives the equations

duk

dt
= − 1

τh
(uk − uk−1) − 1

τh
(uk − uk+1)

=
1
τh

(uk−1 − 2uk + uk+1)

for k = 2, . . . , n− 1, where we take u1 = un = 0. These give us a system of n− 2 ordinary differential equations

u′ = Au

with

A =
(

1
τh

)



−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0

. . .
0 . . . 0 0 1 −2




If our model is to be a reasonably close approximation to reality, we must take n to be very large. In order to
understand what happens for large values of n, we have to rewrite our differential equations slightly. If n is large
then the length of each chamber will be very small, and the expression

uk − uk−1

will be small, also. But the quotient
uk − uk−1

h

will be a close approximation to the derivative of the true temperature u(xk) where xk = kh. Furthermore, the
quotient difference (

1
h

) (
uk+1 − uk

h
− uk+1 − uk

h

)

will be close to the second derivative of u at xh. We therefore rewrite our equations as

duk

dt
= −h2

τh

1
h2

(uk−1 − 2uk + uk+1) = − 1
τh/h2

1
h2

(uk−1 − 2uk + uk+1) .

We know that the second part of this equation has as its limiting value u′′(xk), while the left hand side has as
limit du/dt evaluated at xk. This suggests that the expression

τh/h2
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also has a limiting value as h → 0. This is certainly very plausible. We know intuitively that the length of time
it takes for an object to cool off is much less for a small object than for a large one, and by asserting that τh/h2

has a limit as h → 0 we are claiming that the dependency of relaxation time on linear size is that it is essentially
proportional to the square of its size. The limit will be a positive number, say α2 for some constant α which will
depend on the material of which the bar is constructed. Thus as n → ∞ the system of differential equations
becomes the partial differential equation

∂u

∂t
= α2 ∂2u

∂x2

if u(t, x) is the temperature at time t and position x. This is called the heat equation in one dimension. Imposed
also are the conditions at the end points

u(t, 0) = 0, u(t, `) = 0

which are called the boundary conditions.

We shall derive the heat equation again from more direct physical principles in a later Chapter. The point to be
understood here is that partial differential equations can arise as the limit of a system of ordinary differential
equations as the system gets very large. This ought to give you more intuition about how solutions to partial
differential equations behave, and suggest a possible method of solution.

3. More about approximating systems

If we are given a system
u′ = Au

then its solutions are linear combinations of solutions

eλtu

where λ is an eigenvalue of A and u is a corresponding eigenvector. In our case

A =
(

1
τh

)



−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0

. . .
0 . . . 0 0 1 −2




is symmetric, so the eigenvalues are real, and the eigenvectors may be taken orthogonal to each other. If the size
of A is large, then one’s first impression is that the problem of finding the eigenvalues and eigenvectors of A is
nearly impossible. It turns out, however, that because A has a regular structure its eigenvalue and eigenvectors
can be found with relative ease.

Suppose that A has size n×n. An eigenvector u = (u1, u2, . . . , un) for A with eigenvalue λ satisfies the equations

−2u1 + u2 = λu1

u1 − 2u2 + u3 = λu2

u2 − 2u3 + u4 = λu3

. . .

un−1 − 2un = λun

or, in other words, the set of equations
uk+1 = (2 + λ)uk − uk−1
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where implicitly u0 = un+1 = 0. An equation of the form

vk+1 = avk + bvk−1

where a and b are constants is called a difference equation. Solving it is very similar to solving an ordinary
differential equation of second order. First of all, any solution is determined by any two successive values, since
if we know v0 and v1 we can determine v2 by looking forward and v−1 by looking backwards. Then also v3, v4,
etc. The equation is also linear, since the linear combination of solutions will be a solution. And since a and b
are constants, we have shift invariance, taking the sequence vk into the sequence wk = vk+1. Therefore shifting
indices is a linear transformation on a two-dimensional vector space, hence has an eigenvalue we call γ. If vk is
an eigenvector of the shift operation then v1 = γv0, v2 = γv1 = γ2v0, etc. so vk = γkv0. If we substitute this into
the difference equation, we see that γ must be root of the characteristic equation

γ2 = aγ + b

and that the general solution to the difference equation is a linear combination

vk = c1γ
k
1 + c2γ

k
2

if γi are its roots. In our explicit example the characteristic equation is

γ2 = (2 + λ)γ − 1

If γ1 and γ2 are its roots then
γ1 + γ2 = 2 + λ, γ1γ2 = 1

and they must be inverses of each other. In other words, if γ1 = γ is one of them, the other is γ2 = γ−1. Since
u0 = un+1 = 0

c1 + c2 = 0, c2 = −c1 = say c

and then
cγn+1 − cγ−(n+1) = 0

or
γ2(n+1) = 1

which means that γ must be one of the complex 2(n + 1)-th roots of unity, say

γ = e2πi`/2(n+1

for some `. If γ = ±1 then we just get the zero solution, so ` = 0 and ` = n + 1 are not allowed, so we have 2n
legitimate possibilities in all. Then

λ = 2 − (γ + γ−1) = cosπ`/(n + 1) .

Finally, the components of the eigenvector are

uk = (γk − γ−k) = 2i sinπk`/(n + 1)

which means that uk = sin πk`/(n + 1) are also the components of an eigenvector.

The eigenvalues are all in the range [−2, 0], and in particular they are all negative numbers as they should be in
a cooling problem.

The general solution is then

uk =
`=n∑
`=1

ck sin πk`/(n + 1)

for arbitrary coefficients ck determined by initial conditions.

Exercise 3.1. Find by these formulas the eigenvectors and eigenvalues of the matrices

[−2 1
1 −2

]
,


−2 1 0

1 −2 1
0 1 −2


 .


