Mathematics 103 - section 203 - Spring 2000

Eighth homework - due Wednesday, March 29
Exercise 1. Graph the functions $f(x)=e^{-x^{2}}, e^{-2 x^{2}}, e^{-2 x^{2}-2}, e^{-x^{2} / 4}, e^{-x^{2} / 4-2 x}, e^{-8 x^{2}}$, each on a separate graph, along with the standard bell curve. Then find the integrals $\int_{2}^{3} f(x) d x$. In each case, indicate on your graph the areas you are finding, and the corresponding area under the standard bell curve.
Exercise 2. Do Exercise 1 in the notes on bell curves.
Exercise 3. (a) Calculate the probabilities of getting between k heads ($k=0$ to 9) from $n=9$ coins, but when the probability of getting heads on each coin is only $p=0.46$. (b) Draw the bar graph. (c) Calculate the probability of getting between 5 and 8 heads in two ways: (i) exact; (ii) using bell curve with mean $m=n p$, spread $s=\sqrt{n p(1-p}$. (d) Graph the bell curve on top of the bar graph.
Exercise 4. If $p(x)$ is a probability distribution on the interval $[a, b]$, then the mean value of a function $G(x)$ of x is the integral

$$
\overline{G(x)}=\int_{a}^{b} G(x) p(x) d x .
$$

For example, the mean value of x is just

$$
M_{1}=\bar{x}=\int_{a}^{b} x p(x) d x .
$$

A special case is the second moment

$$
M_{2}=\overline{x^{2}}=\int_{a}^{b} x^{2} p(x) d x .
$$

The variance is the mean of $(x-\bar{x})$, or

$$
V=\int_{a}^{b}\left(x-M_{1}\right)^{2} p(x) d x
$$

It has something to do with measuring the spread of the distribution. For example, it will be small if all values are bunched up around the mean of x, and large if there are a lot of values far away. This can also be expressed as $M_{2}-M_{1}^{2}$. The standard deviation σ, sometimes called the spread is \sqrt{V}.

Compute the mean, variance, and standard deviation of
(a) $p(x)=1 / b \quad(0 \leq x \leq b)$
(b) $p(x)=k e^{-k x} \quad(k>0)$
(c) $p(x)=2(1-x) \quad(0 \leq x \leq 1)$.

Exercise 5. For the differential equation

$$
y^{\prime}=2 y(2-y)
$$

(a) Graph the slope field-grid 0.25×0.25-in the region $0 \leq x \leq 2,0 \leq y \leq 3$. (b) Find explicitly the solutions with initial conditions $y(0)=0 ; y(0)=1 ; y(0)=3$. (c) Sketch their graphs on the graph in (a). (d) Find approximations of the form $3+A e^{-B t}$ (for large t) to the solutions in (b) that approach the line $y=3$.
Exercise 6. Let $K(t)$ be the amount of knowledge you have. Of couse when you start studying $K(t)=0$. From the moment you start, the rate at which you acquire knowledge is constant, while the rate at which you forget is proportional to what you know. (a) Write down a differential equation for $K(t)$. (b) What is the most knowledge you will every possess? (c) At what moment will you have learned half the total?

Exercise 7. Find the slope field of

$$
y^{\prime}=y\left(y^{2}-1\right) \quad(0 \leq t \leq 3,-1 \leq y \leq 1)
$$

Find as best you can the solution with $y(0)=2$, and graph it in the range $0 \leq x \leq 3$.
Exercise 8. A certain substance Y is involved in a chemical reaction in which it is produced and degraded. Its concentration satisfies $y^{\prime}=\alpha-\beta y$ with $\alpha>0, \beta>0$. In the diagram below, a solution $y(t)$ is graphed. (a) What are α and β ? (b) Write down the formula for $y(t)$.

