Mathematics 103 - section 203 - Spring 2000

Seventh homework - due Monday, March 20

Exercise 1. A certain probability density is of the form $C e^{-t / \tau}$ for a constant τ. What is C ?
Exercise 2. What is the probability of getting between 5 and 8 heads (inclusive) in a toss of 13 balanced coins?

Exercise 3. Make a bar graph of the probabilities for the total score in a toss of two dice.
Exercise 4. What is the probability of getting between 30 and 40 heads (inclusive) in a toss of 50 balanced coins? (Use the table of areas under the bell curve.)

Exercise 5. The probability density of a light bulb failing at time t is $C e^{-t / 100}$ for t in days. (a) What is C ? (b) What is the probability that a light bulb lasts at least 100 days? (c) What is the mean life of a light bulb? (d) The median? (e) The probability of lasting at least T days?
Exercise 6. The probabilility that a certain radioactive atom will disintegrate is $C e^{-t / \tau}$ for some constant τ. (a) If the half-life of this substance is 4 days, what is τ ? (b) Same assumption as in (a). What is C ?

Exercise 7. A certain population of males has height distribution given by the bell curve

$$
\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} / \sigma^{2}}
$$

with $\mu=180$ and $\sigma=10$ (in cm). What proportion of them have height 170 or more?
Exercise 8. Find the coordinates of the centroid of the region $0 \leq x \leq 1, y \leq \sqrt{x}$.
Exercise 9. Estimate

$$
\int_{0}^{1} e^{-x^{2}} d x
$$

Exercise 10. (a) If p is the exact probability of geting 50 heads from a toss of 100 coins, what is the exact probability of getting between 49 and 51 heads from a toss of 100 coins. (b) Estimate p, teling how you did so.

