Mathematics 103 - section 203 - Spring 2000

Fifth homework - due Friday, February 25

Exercise 1. Evaluate the following integrals. You must show all your work to get credit.
(a) $\int \frac{1}{1-y} d y$
(b) $\int_{0}^{T} t e^{-2 t} d t$
(c) $\int \frac{2}{4+x^{2}} d x$
(d) $\int_{2}^{p} \frac{1}{1-y^{2}} d y$
(e) $\int_{1}^{p} \frac{1}{2+2 y+y^{2}} d y$
(f) $\int_{0}^{\pi} x \sin \left(\frac{x}{2}\right) d x$
(g) $\int_{1}^{S} \frac{k_{1}}{k_{2}-n} d n \quad\left(k_{2}\right.$ outside the range $\left.[1, S]\right)$

Exercise 2. Find the average value of the function

$$
f(x)=\sin (\pi x / 2)
$$

over the interval $[0,2]$.
Exercise 3. The intensity of light cast by a streetlamp at a distance x (in meters) along the street from the base of the lamp is found to be approximately $I(x)=20^{2}-x^{2}$ in arbitrary units for $-20<x<20$. (a) Find the average intensity of the light over the interval $-5<x<5$. (b) Find the average intensity over $-7<x<7$. (c) Find the value of b such that the average intensity over $[-b, b]$ is $I_{\mathrm{av}}=10$.

Exercise 4. In November 1999, the rain in Vancouver fell at the rate $R(t)=4((1+t \sin (\pi t / 30))$ where t is time in days and $R(t)$ is in $\mathrm{cm} /$ day. Find the total amount of rain that fell and the average rate of rainfall over the first 10 days of the month $(0 \leq t \leq 10)$ and over the whole month $(0<t<30)$.
Exercise 5. Consider a distribution function $y=f(x)>0$ defined on some interval $[a, b]$. The median of f is defined to be a value of the independent variable, x, say $x=m$ which splits the area under $f(x)$ into two equal portions, i.e. such that

$$
\int_{a}^{m} f(x) d x=\int_{m}^{b} f(x) d x=\frac{1}{2} \int_{a}^{b} f(x) d x
$$

Use this definition to find the median of the following functions on the indicated interval.
(a) $f(x)=1-x^{2}, \quad(-1 \leq x \leq 1)$
(b) $f(x)=|1-x|, \quad(-1 \leq x \leq 1)$
(c) $f(x)=5-x, \quad(0 \leq x \leq 5)$
(d) $f(x)=\sin (2 x), \quad(0 \leq x \leq \pi / 4)$
[Remark: it will help to sketch the given function and interval and use considerations of symmetry for some of these examples.]

