Mathematics 103 — section 203 — Spring 2000 Fifth homework — due Friday, February 25

Exercise 1. Evaluate the following integrals. You must show all your work to get credit.

(a)
$$\int \frac{1}{1-y} dy$$

(b) $\int_{0}^{T} te^{-2t} dt$
(c) $\int \frac{2}{4+x^{2}} dx$
(d) $\int_{2}^{p} \frac{1}{1-y^{2}} dy$
(e) $\int_{1}^{p} \frac{1}{2+2y+y^{2}} dy$
(f) $\int_{0}^{\pi} x \sin\left(\frac{x}{2}\right) dx$
(g) $\int_{1}^{S} \frac{k_{1}}{k_{2}-n} dn$ (k₂ outside the range [1, S])

Exercise 2. Find the average value of the function

$$f(x) = \sin(\pi x/2)$$

)

over the interval [0, 2].

Exercise 3. The intensity of light cast by a streetlamp at a distance x (in meters) along the street from the base of the lamp is found to be approximately $I(x) = 20^2 - x^2$ in arbitrary units for -20 < x < 20. (a) Find the average intensity of the light over the interval -5 < x < 5. (b) Find the average intensity over -7 < x < 7. (c) Find the value of b such that the average intensity over [-b, b] is $I_{av} = 10$.

Exercise 4. In November 1999, the rain in Vancouver fell at the rate $R(t) = 4((1 + t \sin(\pi t/30)))$ where t is time in days and R(t) is in cm/day. Find the total amount of rain that fell and the average rate of rainfall over the first 10 days of the month ($0 \le t \le 10$) and over the whole month (0 < t < 30).

Exercise 5. Consider a distribution function y = f(x) > 0 defined on some interval [a, b]. The **median** of f is defined to be a value of the independent variable, x, say x = m which splits the area under f(x) into two equal portions, i.e. such that

$$\int_{a}^{m} f(x) \, dx = \int_{m}^{b} f(x) \, dx = \frac{1}{2} \int_{a}^{b} f(x) \, dx$$

Use this definition to find the median of the following functions on the indicated interval.

- (a) $f(x) = 1 x^2$, $(-1 \le x \le 1)$ (b) f(x) = |1 - x|, $(-1 \le x \le 1)$ (c) f(x) = 5 - x, $(0 \le x \le 5)$
- (d) $f(x) = \sin(2x), \quad (0 \le x \le \pi/4)$

[Remark: it will help to sketch the given function and interval and use considerations of symmetry for some of these examples.]