Mathematics 103 - Section 103 - Spring 2000

Third homework - due Friday, January 28

Exercise 1. Find the following integrals using the Fundamental Theorem of Calculus.
(a) $\int_{a}^{x} e^{k t} d t$
(b) $\int_{0}^{x} A \cos (k s) d s$
(c) $\int_{b}^{x} C t^{m} d t$
(d) $\int_{1}^{x} \frac{1}{a q} d q$
(e) $\int_{c}^{T} \sec ^{2}(5 x) d x$
(f) $\int_{1}^{x} \frac{2}{1+t^{2}} d t$
(g) $\int_{b}^{x}\left(3 / s^{2}\right) d s$
(h) $\int_{a}^{T} \frac{1}{x^{1 / 2}} d x$
(i) $\int_{0}^{x} \sin (3 y) d y$
(j) $\int_{b}^{x} 3 d t$

Exercise 2. The growth rate of a crop is known to depend on temperature during the growing season. Suppose growth rate of the crop in tons per day is given by $g(t)=0.1(T-18)$ where T is temperature in degrees Celsius. Suppose the temperature record during the 90 days of the season was $T(t)=22+(0.1) t+4 \sin (2 \pi t / 60)$ where t is time in days. Find the total growth (in tons) that would have occurred.

Exercise 3. Oil leaks out of an oil tanker at the rate $f(t)=10-(0.2) t^{2}$ (where f is in units of 10,000 barrels per hour and t is in hours). (Note: This function only makes sense as long as $f(t) \geq 0$ since a negative flow of oil is meaningless in this case.) (a) At what time will the flow be zero? (b) What is the total amount that has leaked out between $t=0$ and this time?
Exercise 4. After World War II, the birth rate increased dramatically. Suppose that the number of babies born (in millions per year) was given by $b(t)=10+(0.01) t^{3}, 0<t<10$ where t is time in years after the end of the war. (a) How many babies in total were born during this time period? (b) At what time t was the total number born precisely 14 million?

Exercise 5. In ancient Egypt, most of the population was confined to a narrow strip of land close to the river Nile. Suppose that the population density along the length of the river was $p(x)=200 e^{-0.001 x}$ people per km where x is distance in km from the mouth of the river. How many people in all lived along the first 100 km of the river? Along the first 500 km ?

Exercise 6. Skipped.
Exercise 7. Let

$$
g(t)=\int_{0}^{t} f(s) d s
$$

where $f(t)$ is the function whose graph is shown $(t \geq 0)$. The grid in this figure is 1×1, and the axes are darkened.

Draw the graph of $g(t)$ as accurately as you can.
Exercise 8. An express mail truck delivers mail to various companies situated along a central avenue and often goes back and forth as new mail arrives. Over some period of time, $0 \leq t \leq 10$, its velocity (in km per hour) can be described by the function $v(t)=t^{2}-9 t+14$. Find:
(a) The net distance (i.e. displacement) traveled over this period of time. [Hint: recall that if you leave home in the morning, travel to $U B C$, and then go back home, then your net distance traveled, or total displacement over this full period of time is zero.]
(b) How much gasoline was consumed during this period of time if the vehicle uses 5 liters per km. [Hint: now you will need to find the total distance that the vehicle actually covered during its trip.]

Exercise 9. The velocity of a boat moving through water is found to be $v(t)=10\left(1-e^{-t}\right)$. (a) Find the acceleration of the boat and show that it satisfies a differential equation, i.e an equation of the form $d a(t) / d t=-k a(t)$ for some value of the constant k. What is that value of k ? (b) Find the distance traveled by the boat by time t.

