
7:47 a.m. June 23, 2010

PiScript—a drawing tool for mathematicians

by Bill Casselman πS
Preface

Producing good mathematical illustrations is a major part of good mathematical exposition. Computers have
made this a totally different experience from what it used to be, but it is still not generally recognized as a simple

task. I hope to change that with the program PiScript (πS), which this manual introduces.

πS is essentially an interface to PostScript graphics, written in the well known programming language Python.

It allows one to do basic programming in Python, but defines certain operators that interface very directly to

the graphics commands in PostScript, which in turn produce PostScript files (and figures) as output. One of
its best features is that inserting text into figures, especially text produced by TEX, is straightforward. In ideal

circumstances, you can reproduce your entire normal TEX environment in πS.
But what’s the point? There are already lots and lots of programs out there that will help you construct mathe­

matical figures—PSTricks, pictex, xfig, PYX, gnuplot, and a host of similar programs of varying capabilities.

Some of these also have a close relationship to PostScript, and some also allow TEX insertions. There are also
as well the huge graphics components of Mathematica and Matlab and their open source simulacra such as

matplotlib (which is the principal graphics component of SAGE). Why have I added yet another one to the

collection?

None of the available programs makes it easy to construct both simple figures as well as more complicated ones

of extremely high quality. All of them have limited flexibility, compared to a direct use of PostScript. This is
especially true of those that are ultimately based on TEX itself, used as a graphics language. For one thing, in order

to produce good mathematical illustrations it is necessary to do real programming, and the low­end tools do not
make this easy or pleasant. In other words, a good graphics tool should be embedded in a flexible programming

language. The high end ones can certainly produce plots and analyses of extraordinarily complicated data, but

they fail as simple everyday tools, and cannot handle easily the more eccentric graphics tasks that mathematics
often requires. And none allows the complete control of the graphics environment that PostScript provides. In

addition, most of them have some trouble integrating text with graphics conveniently. One notable exception is

PYX, but it is a very, very unwieldy tool otherwise.

One solution to this problem is the one I myself used for many years—to program directly in PostScript. I have

even taught PostScript as a graphics tool to undergraduates, in a course designed to help themunderstand the role
of visual reasoning in mathematics. I have written the manual Mathematical Illustrations to go along with this

project. But although I havemanaged to build an extensive library of programming tools tomake it relatively easy

for me to do good graphics work with PostScript, the complexity of my tools has eluded widespread adoption
of my techniques by others. I won’t list here all the problems one encounters when programming directly in

PostScript, but there are many. I have in fact often thought how pleasant it would be to have some kind of object
oriented graphics language with all of the good graphics output of PostScript but few of its other difficulties. I

have had this idea in mind while constructing my own idiosyncratic tools, but when I first learned about Python,

which was first called to my attention by William Stein, I realized that it would probably make my idea quite
feasible.

The point of πS is that it makes my awkward work­arounds no longer necessary. It differs from many of the
alternative graphics tools that I have mentioned in that it allows access to essentially all of the graphical features
of PostScript, and there is thus no serious limitation on the quality of output. It differs from some of the more

awkward graphics tools, those that embed graphics into TEX, in that it is itself embedded in Python, a convenient,
elegant, and fully functional programming language. It differs from the direct use of PostScript in many ways. In

particular, embedding of TEX text is easy, and one does not have to resort to opaque tricks to program effectively.

Another huge advantage of πS over PostScript is that you won’t have to deal with the terrible, terrible error

messages of PostScript. Well, not often, at any rate. Most of your errors will likely be made in Python, and errors

in Python are handled admirably.

PiScript manual (7:47 a.m. June 23, 2010) 2

Compared to some graphics tools,πS is rather verbose. This is my own deliberate choice, and amatter of personal

style—I prefer to offer the user relatively simple tools and let him build his own more complicated ones. One
might think of πS as a kind of artist’s tool rather than as a mathematical one. But then constructing a good

mathematical illustration is in fact much like landscape painting. It is certainly more an art than a science. And

the almost infinite flexibility at hand can make it seem as if those glorious days of kindergarten finger­painting
can be relived. Mathematics becomes the toy it is already in our own minds.

This manual will cover only πS itself, and will say almost nothing about how to write a program in Python. I
have written an appendix, however, with some brief advice on this. Documentation on PostScript itself will help

you to understand the graphics model followed here. The book Mathematical Illustrations is an introduction to
PostScript for those with some experience in mathematics. It has been published in tangible form by Cambridge

University Press, and is also available at

http://www.math.ubc.ca/~cass/graphics/manual

As for the present document, there are several major parts:

Contents

1. Drawing in 2D
2. Text in figures I. TEX

3. Text in figures II. PostScript

4. Paths
5. 3D drawing

6. Miscellaneous

7. Coordinate systems
8. Advice on illustrating mathematics

The last part is no more than an outline, and will be expanded in the future. In addition:

Appendices

A1. Setting up
A2. A (very) brief introduction to Python

A3. Inserting your beautiful figures into TEX files
A4. The make utility

A5. Index of commands

I would like to thank David Austin for helping me find errors in πS as it developed from a very small seed;

William Stein for introducing me to Python; and Christophe K. for helping me set upπS underWindows. I’d like

to thank Günther Ziegler for arranging visits to Berlin in order to work on πS, and a few long­suffering guinea
pigs . . . er, I meant to say students . . . at the Berlin Mathematical School at TU­Berlin for helping me chase out

bugs and add features. Finally, I’d like to thank David Maxwell for taking a big hand in improving the TEX and

other font facilities. As far as text handling is concerned, and because of other valuable suggestions made by him
for improvement, he should be considered a partner in this project.

PiScript manual (7:47 a.m. June 23, 2010) 3

Part 1. Drawing in 2D

There are some 3D capabilities in πS, and they will undoubtedly get better as time goes on. But it is mostly

designed to make figures in 2D.

1. The graphics model

The graphics model of πS is essentially that of PostScript, and in fact its principal output is PostScript code that
utilizes the PostScript graphics environment. PostScript is a complete programming language, but it was not

intended for humanuse. It was designed primarily as a sophisticated printer language, and evennownearly all of

the world’s PostScript originates in higher level graphics programs sending data to a PostScript­capable printer.
It has what at first appears one very eccentric feature—like a few other languages (for example, FORTH) that were

designed to be implemented efficiently on a physical machine, it is not compiled but fed in a straightforward way

to the machine. It is designed to be executed as quickly as possible rather than to be written as conveniently as
possible. This excludes the standard computer languages, in which—for example—the expression 2 +7 ∗ (3 +5)
can only be completely interpreted after all its subexpressions have been interpreted. Algebraic expressions are

written in a context­free language and have to be parsed—changed into something a computer could deal with
directly—before interpretation. On the contrary, PostScript is expressed in RPN (Reverse Polish Notation) format,

which allows commands to have immediate effect. (RPN was invented for the most pure of reasons by the most
pure of Polish logicians early in the twentieth century.) This requires putting data before operators. For example,

in PostScript adding x and y would be done as x y add. And the expression above would be evaluated by the

sequence

2 7 3 5 add mul add

This is not so readable by humans, but to the computer it is very practical. Data is put on an operator stack and

then removed and operated on, as soon as possible, when operators appear. For example, here is how the stack

appears in the course of evaluating 2 + 7 ∗ (3 + 5):

2

2 7

2 7 3
2 7 3 5 (add)

2 7 8 (mul)
2 56 (add)

58

Expressions do not have to be put on hold until they have been completely read—as soon as an operator is

encountered, it is applied. As with the original HP calculators, in programming this way one has to keep mental

track of the operator stack in order to do well with this scheme. This is one feature of the PostScript language
that some never get used to, and indeed it occasionally causes even experts some perplexity. This ought not

to be too surprising. Although there might very well be intelligent beings somewhere in the Universe whose

mental processing is based on RPN, the human mind is surely based on the alternate paradigm of recursion and
context­free grammar. With the more conventional Python interface, that need not bother us.

The graphics model of PostScript is fairly simple. First of all, there are two very different ways it produces
graphics—one is by bit­mapped images, for example photographs, and the other is by constructing and manipu­

lating paths. It is the second that we shall be concerned with (although in the future I’d like to see routines in πS
that do some bit­map manipulation). This is often called vector or scalable graphics. The principal task that πS
performs is to construct and draw paths. Even setting text is essentially a matter of drawing paths. Once a path

has been constructed, one can fill its interior with color or merely stroke its outline. The paths are constructed
in a certain coordinate system, which the programmer can change as he or she goes along. I repeat: paths are

first constructed, then drawn. When then they are actually drawn, certain parameters (such as color) are applied.

PiScript manual (7:47 a.m. June 23, 2010) 4

πS and PostScript both use a stack in keeping track of the graphics state , which allows one to change graphics

parameters but also to revert to previous values. In this it is like many other graphics languages.

It is by no means necessary to understand PostScript in order to use πS, but it will help in understanding some of

the decisions made in developing it. For a brief account, the Wikipedia page

http://en.wikipedia.org/wiki/PostScript

is instructive.

I now run through a description of the basic commands available in πS. Many of these have several alternative

formats. In this preliminary manual, I have been rather brief. You should be able to figure out more by
experimenting.

2. Getting started

Once all the right files have been installed and certain environment variables have been set correctly (seeAppendix

A.1), the process for producing a figure goes like this:

• you edit a Python program (simple text file) that uses the operations defined in the PiScript files to draw a
figure or figures;

• you run Python on that file, if everything goes well, to produce a PostScript file (by default, with the extension
.eps);

• you view that PostScript file to see if all went as you meant it to, and if it did not you go back to the first step.

The text file should normally have extension .py.

We might see some other options later on, but usually one begins a πS file by importing the Python module

PiModule, located in the package piscript. Just about every πS program should thus start out with

from piscript.PiModule import *

This automatically imports as well the Python math package as well as the πS package Vectors and the class

Vector it contains.

In any πS program, you start with a call to the initialization function init, which sets the output file and the size

of the figure (by specifying its dimensions).

init(w, h)

init(llx, lly, urx, ury)

init(..., "noclip")

There are several options to init, and I shall explainmore in amoment. To preserve your sanity, yourπS program
files should always end with the extension .py, and the prefix of the .py file should match that of the PostScript

output. This advice is reinforced by the simplest option for init, in which by default the output file for the

program xxx.py is set automatically to xxx.eps.

The numerical arguments in these options set the bounding box of your figure. the corresponding PostScript

figure will have bounding box (0 0 w h) or (llx, lly, urx, ury). The bounding box specifies the lower left
and upper right corners of a figure.

lower left

upper right

PiScript manual (7:47 a.m. June 23, 2010) 5

The unit of length at startup is one Adobe point, or 1/72 inch (or 2.54/72 = 1/28.35 centimeters, since there are

exactly 2.54 centimeters to one inch). The numbers llx etc. can be floating point or integers, but they will be
converted to the nearest integers because that’s what the PostScript document structure specification demands.

The principal point of using the longer form, with a lower left corner other than (0, 0), is to get around the fact

that printers often refuse to print along the margins of a page.

The most general form of the arguments of init is (<output>, <bounding box>, <clipping option>). As

we have seen, the output specification can be blank. But if you don’t want your program xxx.py to produce
xxx.eps you’ll have to specify the output. It must be a string, like "xxx", surrounded by double quotes. Here

are some examples.

Output argument Output file

".ps" xxx.ps (where the program file is xxx.py)

"yyy" yyy.eps (even if the program file is xxx.py)
"xxx.ps" xxx.ps

There is a subtle difference between the two possible extensions .eps and .ps, but all you have to know is that
if you are producing a PostScript file with several pages:

If you are making several pages in one program then (a) you must choose “.ps" output and (b) you
should set the lower left of your bounding box to be (0, 0).

The reason for the second rule is that many programs that process your PostScript file, such as printers or PDF
renderers, forget the bounding box specification on the second and subsequent pages and therefore introduce an

unwanted offset.

Unless the argument "noclip" is used, all subsequent drawing is restricted to within the current bounding box.
If "noclip" is the last parameter, the figure will be allowed to overflow its bounding box.

beginpage()

Begins a new page. The important point about this is that you can output files of several pages, although usually
you will want to output only one. Pages are isolated from each other—by default, all changes in the graphics

state are entirely restricted to one page, so that each page may be accessed independently. At the start of every

page, the unit of length is 1/72 of an inch (one Adobe point), the coordinate grid is square, and the origin is at
lower left. If the lower left corner of the bounding box is not the origin, you will probably want to follow this

beginning by translating the origin to (llx, lly). Also, beginpage() causes the default graphics state to be saved
on the graphics stack, and a new copy pushed above it. (Exactly what this means will be explained later.)

endpage()

Ends a page, restores the default graphics state so the next page starts out fresh. There must be matching

beginpage/endpagepairs. The console will tell you as it is producing pages, and it will issue a warning if certain
errors are encountered that violate the page structure.

finish()

All the rest of the time, πS is assembling a few large strings. At the very end of your file—and only once in
your file—you should call finish. When this happens, these pieces are assembled and written to the output file,

which is then closed. Forgetting to put this at the end of a πS program is fatal. A very common error in writing
πS programs is to forget the parentheses in a command, for example writing finish instead of finish(). This
will not cause an error in Python, because the name of a command without () is just seen as a pointer to the

command. The command is silently ignored, and—worst of all—there is no notice to this effect. One sign that
this has happened is that no .eps file is produced.

Be sure to finish every πS program with finish().

The minimal πS program is thus something like

PiScript manual (7:47 a.m. June 23, 2010) 6

from piscript.PiModule import *

init(100, 100)

beginpage()

endpage()

finish()

It opens a file called something-or-another.eps, giving rise to a PostScript image of size very roughly 3.5 cm.
square. But of course there is nothing to see there!

You can even have a file with two blank pages (but it should have a “.ps” extension):

from piscript.PiModule import *

init(".ps", 100, 100)

beginpage()

endpage()

beginpage()

endpage()

finish()

As a program proceeds, its coordinate system may change, and as this happens the coordinates of its corners
will change as well. The real, physical limits of your figure—its bounding box—are set once and for all in the

initialization. Itmay not be changed dynamically, but it is possible to seewhat it is in terms of current coordinates.

currentbbox()

Returns the current bounding box in terms of current coordinates. This is a polygon, the array of its corners. We
can also recover the width and height of our figure:

width()

height()

Of course these are completely determined by the bounding box, which is statically determined, but if you change

the bounding box in init you might like to avoid having to change the references to fixed numbers all through

your program. For example, in the opening coordinate system to the point 10 points left of and 10 points down
from the upper right hand corner is (width()-10,height()-10).

3. Confession

I have not in fact told the entire truth. In excuse, I quote the immortal words of Don Knuth, who tells us in the

preface to the TEXBook :

Another noteworthy characteristic of this manual is that it doesn’t always tell the truth. . . . The author
feels that this technique of deliberate lying will actually make it easier for you to learn the ideas. Once
you understand a simple but false rule, it will not be hard to supplement that rule with its exceptions.

I’m not sure I agree with this completely, because a friend of mine who is a child psychologist once told me that

the opposite is true of children, in the sense that they often have great trouble readjusting something they once
believe. But in the case at hand I feel justified. Howdid I lie? It is in fact not necessary to use beginpage/endpage
if you are only doing one page. So the minimal πS page outline is in fact more like

from piscript.PiModule import *

init(100, 100)

...

<drawing in here>

PiScript manual (7:47 a.m. June 23, 2010) 7

...

finish()

Everything here is really necessary. However, using beginpage/endpagedoes no harm.

If you ask why I have not started out by telling you the truth, I have to confess it is because a number of tricky

questions arise that I don’t want to deal with right now. For example, suppose you do some graphics between

init and beginpage. Is it then lost? The safest thing to do is this: if you use beginpage/endpage then you
should do graphics only between these two commands.

4. Simple drawing commands

Next, we see how to construct paths and make them visible.

newpath()

This starts a new path, destroying any previous one. Leaving this out when starting a new path is an extremely

common error that will be passed over in silence by both PostScript and πS, but it will often lead to weird effects.
What happens is that the newdrawing commands just get added to those of the last path. Here, aswith finish(),

writing newpath instead of newpath() is a common error. The real trouble with forgetting newpath is that often
it will cause no harm at all. But when it does cause trouble it will often confuse you horribly. So I emphasize:

Be sure to start every new path with newpath().

moveto(x, y)

moveto((x, y))

moveto([x, y])

moveto(P)

This command puts the pen down at the position (x, y), making it the current point. Every path must start with
a moveto. Here I follow a convention according to which P is a Vector, that is to say an instance of the Python

class Vector to be discussed later on. The array forms of argument are especially useful (here, and also in other
commands where they are acceptable) when feeding in points calculated by some other routine.

From now on, a P or a V listed as an argument for a command will allow as well either (a) a list of
numbers (such as (x, y) above) or (b) a single object P which is an array in the sense that (i) entries P [i] are
defined and evaluate as numbers and (ii) len(P) is the number of items in the array.

Useful examples of such arrays are Python lists [...] and tuples (...) as well as Vectors, which are part of the
πS package. I recall that tuples in Python are immutable, which is to say they cannot be changed in any way at

all, whereas lists are extremely changeable.

In this manual, I’ll write (...) when any array in this sense is acceptable as an argument, and [...]

when a mutable array is required.

There is going to be some mild confusion, though, for mathematical reasons that will be apparent later on.

lineto(P)

Adds to the current path the line from the current point to P . Usually in drawing a path you want to start with
a moveto and then continue it with a sequence of linetos to its end. But a path may have several components,

each with its own initial moveto. Thus

moveto(-1,0)

lineto(1,0)

moveto(-1,1)

PiScript manual (7:47 a.m. June 23, 2010) 8

lineto(1,1)

constructs a single path from a pair of horizontal lines of length 2, one unit apart.

After you have constructed a path with moveto and lineto (or a few other drawing commands to be introduced
later), you’ll want to make it visible.

stroke()

stroke(g)

stroke(r, g, b)

stroke((r, g, b))

The commands described earlier tell you how to construct a path, but they do not display it. There are two ways
to do so. The first of these is stroke. It draws along the current path in gray scale g, or color (r, g, b). If no

arguments are given, it strokes in the current color. At the start of every page, this color is black. When a path is

stroked, the coordinate system is the default, so that the default width is 1 point. But if you have scaled the line
width or set it to something else, that change will take effect in the stroking but in units of 1 point.

The coordinates of a color should be in the range [0, 1]. The array form is convenient, since one can predefine
colors: red=(1,0,0) etc. Higher is brighter, so black is (0, 0, 0),white is (1, 1, 1), andvery light pink is (1, 0.9, 0.9).
I recall that grays are shades with equal RGB components. One could even define a whole collection of colors in

a file somewhere and import their definitions. One can also use the arrays to manipulate colors, for example by
interpolating them or darkening them.

fill()

fill(g)

fill(r, g, b)

fill((r, g, b))

Similar to stroke, but fills the current path, implicitly first closing up each component of the path to its last
moveto. I repeat: the commands moveto etc. construct a path, but do not render it visible. Only stroke and

fill do that. So now here is a very simple program that actually draws something:

from piscript.PiModule import *

init("square", 100, 100)

beginpage()

newpath()

moveto(25,25)

lineto(75,25)

lineto(75,75)

lineto(25,75)

lineto(25,25)

fill(1,0,0)

stroke(0)

endpage()

finish()

This seems to draw a perfectly fine square, but if we zoom into the starting corner we can see that it is flawed:

PiScript manual (7:47 a.m. June 23, 2010) 9

The other corners don’t have this problem. We’ll see later (in the discussion of closepath) how to fix it.

At any rate, what this produces is a PostScript file named square.eps that looks like this:

%!PS-Adobe-2.0 EPSF-3.0

%%Pages: 1

%%PageOrder: Ascend

%%BoundingBox: 0 0 100 100

%%Creator: PiScript Sat Jul 11 22:20:35 2009

%%BeginProcset:

/ReEncodeFont { exch findfont << >> copy dup 3 2 roll

/Encoding exch put definefont } def

%%EndProcset

%%BeginProlog

%%EndProlog

%%Page: 1 1

gsave

newpath

0 0 moveto

100 0 lineto

100 100 lineto

0 100 lineto

closepath

clip

newpath

25 25 moveto

75 25 lineto

75 75 lineto

25 75 lineto

25 25 lineto

gsave

1 0 0 setrgbcolor

fill

grestore

gsave

0 setgray

(1.0e+00 0.0e+00 0.0e+00 1.0e+00 0.0e+00 0.0e+00) concat

stroke

grestore

grestore

showpage

%%EndPage

%%Trailer

PiScript manual (7:47 a.m. June 23, 2010) 10

%%EOF

The PostScript file is a bit verbose, and rather difficult to read. As I said earlier, PostScript was not designed

primarily with human readability in mind. But you should be able to track loosely what’s going on without a lot

of trouble. We’ll see later what all those gsaves and grestores mean.

Both πS and PostScript always lay a figure over what has been previously drawn. There is no way to achieve

partial visibility by adjusting a transparency factor. (This may be fixed in future versions of πS that are capable of
producing output other than PostScript.)

Incidentally,πS opens a temporary file on your systemwith the extension .pys, and if the program is interrupted
it will probably leave one of these still around. You may remove it without hesitation.

5. A simple example

With the commands I have mentioned, you can already do some interesting drawing. After a quick hand­sketch,
you can produce a familiar figure (as I’ll do often, I have added a coordinate grid that is not accounted for in the

code):

newpath()

moveto(0,0)

lineto(4,0)

lineto(4,-4)

lineto(0,-4)

lineto(0,0)

stroke()

newpath()

moveto(0,0)

lineto(0,3)

lineto(-3,3)

lineto(-3,0)

lineto(0,0)

stroke()

newpath()

moveto(0,3)

lineto(4,0)

lineto(7,4)

lineto(3,7)

lineto(0,3)

stroke()

(0, 0)

(3, 7)

(7, 4)

There are many reasons not to be so happy with this. Suppose you want to draw some other Pythagoras
configuration? You’d have a lot of numbers to change. Also it seems somewhat redundant to put in all those

linetos to make the squares, when you’re really doing the same task over and over—making a square.

For the first problem, we can use variables:

a = 3

b = 4

c = math.sqrt(a*a+b*b)

and change the later code accordingly. For the second, we can define a procedure mksquare that constructs a

positively oriented square with a given side from P to Q.

PiScript manual (7:47 a.m. June 23, 2010) 11

def mksquare(P, Q):

P = Vector(P)

Q = Vector(Q)

v = Q - P

vperp = v.perp()

moveto(P)

lineto(Q)

lineto(Q + vperp)

lineto(P + vperp)

lineto(P)

P

Qv
v⊥

For ease of reading this uses Vectors, which will be explained later. This makes possible a kind of vector algebra,

as you can see. Given this procedure, making the Pythagoras figure looks pretty simple:

newpath()

mksquare([0,0], [0,a])

stroke()

newpath()

mksquare([0,0], [0,-b])

stroke()

newpath()

mksquare([0,a], [b,0])

stroke()

6. More about drawing

At any given moment, the graphics in PostScript or πS is done in a particular graphics environment or graphics
state , which the programmer can change every now and then. Part of the graphics state is the current path.
Ultimately, it is to be incorporated in a figure by either filling its interior, drawing the path itself, or restricting the

region affected by drawing to its interior. Paths are where the real action takes place—youmight think of the part
of a program that is actually constructing a path as its cockpit. Even text is ultimately just a collection of paths.

The paths are the important part of your program, and it is important that the part of your program that draws

paths be readable.

I have already introduced a few basic drawing commands. In some sense, they are just about all that’s really

necessary. But it is convenient to have some more at hand.

rmoveto(V)

Shifts the current point by the vectorV = [dx, dy], without adding anything visible to the current path. TheV here

is a Vector. I am just mathematician enough to distinguish between points (position) and vectors (displacement)
in my notation, although in practice they are both realized as arrays. I’ll say more about the distinction, which

is important, in a later discussion about coordinate systems. For the moment, let me say that in the command

moveto(x,y) the pair (x, y) is a point, because it represents position, but in rmoveto(dx, dy) the array [dx, dy]
represents a vector because it represent displacement relative to a position. As they tell you in physics class, a

vector has direction and magnitude (but not position).

rlineto(V)

PiScript manual (7:47 a.m. June 23, 2010) 12

Adds a line segment to the current path, with end point relative to the current point. The r in rmoveto and

rlineto stands for “relative”.

quadto(P1, P2)

rquadto(V1, V2)

Curves can always be drawn as a sequence of small line segments, but there are two kinds of curves built in to
πS that will look smoother. They are parametrically defined by quadratic and cubic parametrizations. The first

command above adds to the current path a quadratic Bézier curve with control points Pi. The second does the

same, but the arguments are interpreted as coordinates relative to the current point. Quadratic Bézier curves are
easy to imagine and to construct, since the control points have a simple geometric significance. The implicit start

of this path segment is the current point and the last control point is the segment’s end point, but here in addition

the intermediate control point is the intersection of the tangent lines at the two endpoints.

newpath()

moveto(0,0)

quadto([10,20],[20,0])

stroke()

produces (with control points and tangent lines also drawn):

This simple geometrical relation makes quadratic Bézier curves the natural choice in many situations. One very
natural one is in constructing contours of a function f(x, y) whose gradient ∇f is known.

These and the cubic curves are drawn very efficiently by a computer, because of how they behave under subdi­
vision. If a quadratic Bézier curve is divided in equal halves, each half is again a quadratic Bézier curve whose

control points are simple to construct. The following figure illustrates what happens:

curveto(P1, P2, P3)

rcurveto(V1, V2, V3)

Adds to the current path the cubic Bézier curve with control points Pi. See Chapter 6 of Illustrations for a

discussion of Bézier curves. Roughly speaking, a Bézier segment begins at the current point, takes off towards

P1 = (x1, y1), then winds up at P3 = (x3, y3) coming from the direction of P2 = (x2, y2). In these pictures, the
control points are shown. In rcurveto, the arguments are relative to the current point.

PiScript manual (7:47 a.m. June 23, 2010) 13

As with quadratic Bézier curves, cubic ones are also constructed by a computer through repeated subdivision

into halves. The following figure shows that (a) each half of a cubic Bézier curve is itself a cubic Bézier curve, and
(b) the control points of those halves may be found by successive linear bisection. Combining these, we can see

that the whole curve can be assembled from small line segments constructed by bisection, which is very efficient

on a computer.

There is one other very useful fact about Bézier curves that is useful in mathematical plotting. It is a relation

between control points and calculus. Suppose we are given a parametrized curve t 7→ f(t) in the plane, and we
wish to plot it. At the moment the only way we know how to do this is to plot it as a sequence of small—maybe

very small—line segments. But occasionally this is a ridiculously difficult thing to do. If we are able to calculate
the velocity f ′(t), we can use a smaller number of Bézier curves instead. If we want to plot the path between t
and t + ∆t by a single Bézier curve, we know that the end points P0 and P3 are f(t) and f(t + ∆t). It will follow

from the discussion later on about Bernstein functions, since the coordinates of a Bézier curve are cubic Bernstein
functions, that

P1 = P0 + (1/3)f ′(t)∆t

P2 = P3 − (1/3)f ′(t + ∆t)∆t .

Because of this, Bézier curves can be used to approximate any graph whose slopes are specified at given points,

or to draw a path whose velocity is specified at given points—for example, for plotting trajectories of solutions

of differential equations, and in particular of integrals.

There is a third thing you can do with a path besides stroke or fill it.

clip()

This clips (i. e. restricts) subsequent graphics to the interior of the current path. In other words, it makes

the current path the outline of a window through which we see what is drawn. The clipping path is part of

the graphics state, since the effects of this command can be controlled with the gsave/grestore commands
explained later on.

The only difference between the following pictures is the added three lines that clip to the box.

gsave()

newpath()

box(2,2)

clip()

newpath()

for i in range(N):

moveto(-10, 10)

lineto(10, -10)

translate(dx, dx)

stroke(1,0.6,0.6)

grestore()

newpath()

box(2,2)

stroke()

PiScript manual (7:47 a.m. June 23, 2010) 14

The clipping restriction should not be in place when the box is stroked, because the clipping will affect the stroke

more than you could guess. The use of gsave/grestore is crucial here. In the figures below, the effects have
been exaggerated by thickening lines. On the right the clipping has been left in effect when stroking is done. Not

so yummy.

As I have alreadymentioned, unless init has a final “noclip" argument, everyπS figure is clipped to its bounding
box.

closepath()

Closes up the current path to the location of the last moveto. Even if the last point you draw to is the same as the

first point you moved to, the path will not be in fact closed unless you use this operation—the beginning and end
points will be treated differently from the other vertices of the path. The operation closepath() ensures that

they are all considered democratically. The basic rule is simple:

If you really want to draw a closed path, use closepath().

Also, fill automatically closes paths before filling. Thus we have the following three figures (with thickened
line widths to exaggerate effects):

newpath()

moveto(0,0)

lineto(1,0)

lineto(1,1)

lineto(0,1)

fill(1,0.8,0.8)

stroke(0.6)

newpath()

moveto(0,0)

lineto(1,0)

lineto(1,1)

lineto(0,1)

lineto(0,0)

fill(1,0.8,0.8)

stroke(0.6)

newpath()

moveto(0,0)

lineto(1,0)

lineto(1,1)

lineto(0,1)

closepath()

fill(1,0.8,0.8)

stroke(0.6)

7. Familiar shapes

This section introduces you to a number of simple shapes constructed by a sequence of primitive commands.

Some of them involve angles.

setdeg()

setrad()

todeg(x)

torad(x)

Angles in PostScript are measured in degrees. InπS one can set whether they are measured in degrees or radians

with these commands. This affects how all angles are interpreted in πS operations that require angles. At the

PiScript manual (7:47 a.m. June 23, 2010) 15

beginning, πS uses radians, and to tell the truth it is safer not to change. But it’s awkward to have to write

math.pi/2when you want 90◦. Keep in mind that Python itself always uses radians internally, and this is not
changed by either of these commands. The angle mode is not part of the PostScript graphics state and is not

affected by gsave/grestore.

The command todeg(x) returns the angle in degrees that x represents in the current mode. For example, if the

mode is ‘degrees’ then todeg(90) returns 90, but if it is ‘radians’ then 90 represents 90 radians, and it will return

90 · 180/π.

arc(P, r, A, B)

Adds to the current path an arc in the positive direction from A to B, centred at P and of radius r. The angles A
and B are interpreted according to the current angle mode.

There is some slightly unintuitive behaviour involved in arc—if there is no current point, it starts with
an implicit move to the beginning of the arc. If there is one, it adds a line from the current point to the
beginning of the arc.

Thus

newpath()

moveto(0,0)

arc(0,0,1,0,90)

stroke()

is different from

newpath()

arc(0,0,1,0,90)

stroke()

The reason for this seemingly bizarre behaviour is that it enables you to construct continuous curves from separate

arcs rather easily. Without this behaviour you’d have to do some calculation with sin and cos.

arcn(P, r, A, B)

Goes in the negative direction.

circle(r)

circle(P, r)

The same as a full circular arc, closed up. With just one argument, the center is at the origin. It has the same

eccentric behaviour as arcs.

newpath()

moveto(0,0)

circle(1)

stroke()

PiScript manual (7:47 a.m. June 23, 2010) 16

box(w, h)

box(P, V)

The first adds a rectangle of width w and height h to the current path, with lower left corner at (0, 0). The second
has lower left corner at P , upper right at P + V .

boundedbox(llx,lly,urx,ury)

boundedbox(P1, P2)

This makes a bounded box with lower left corner at P1 and upper right corner at P2. It is especially convenient
for use with TEX insertions.

lower left

upper right

parallelogram(P, U, V)

A parallelogram is parametrized by a corner P together with two vectors U , V ranging out from it, as a box is

determined by corner, width, and height. The path constructed is closed.

polygon(p)

Constructs the polygon p, which is an array of points (Pi). It does not close it.

grid(N, ds)

This constructs a grid [−N, N]× [−N, N] of squares ds× ds. It is meant primarily as a simple debugging utility.
If in the course of drawing something you want to display temporarily what your coordinate system looks like,

you can include something like:

newpath()

grid(5, 1)

stroke(0.8)

It is easy to delete when you are through ‘debugging’ your picture.

graph(f, a, b, *args)

Adds the graph of y = f(x) from x = a to x = b to the current path. Here f(x) is a Python function with one
variable, and perhaps some extra parameters in the argument. By default, this command assembles 200 linear

segments of uniform x­width. It also behaves like arc—if there exists a path already started it draws a line from
the end of that path to the start of the graph. What *args means is that you can tack on to this an arbitrary

number of extra parameters to be passed to the function. Here is the code for one version, which I include so you

can see how simple it is:

def graph(self, f, a, b, *args):

x = a

N = 200

dx = float(b-a)/N

moveto(x, f(x, *args))

for i in range(N):

x += dx

lineto(x, f(x, *args))

PiScript manual (7:47 a.m. June 23, 2010) 17

Note the use of float to prevent problems with integral division. This is just about the simplest possible program

you could use to draw a graph. Packages like Mathematica include far fancier routines to do this, and to handle
all kinds of odd phenomena, but I prefer to roll my own. However, it is possible to do a smoother and in some

sense more efficient construction of paths if you know how to calculate f ′(x) as well as f(x). This involves

Bézier curves. It has beenmentioned already above, and is explained in more detail in Chapter 6 of Mathematical
Illustrations .

8. Graphics states I. The coordinate system

Your graphics environment or graphics state changes throughout your program. At any moment it records

(a) the current coordinate system, which keeps track of the relation between the programmer’s coordinates
and those of some fixed default coordinate system;

(b) the current color;

(c) certain features of the lines it draws, such as dash pattern (default: solid), line width (default: 1/72 of an
inch), and the way lines end and join together;

(d) the current region to which drawing is restricted (the clipping path);

(e) the current path being constructed.

In the course of drawing something one might wish to change the graphics state temporarily, only to go back to

the old one after a while. To allow this, both PostScript and πS maintain an array of graphics states which one
manipulates from time to time. It is a stack, as they explained to you in your beginners’ course in programming.

The basic operations are (a) adding on a new graphics state at the end of the array, or (b) removing the one

currently at the end. When a new one is added, it starts up with a new copy of the current one, and changes in
the graphics state are applied only to that copy. They do not affect previous graphics states. Coordinate changes

thus accumulate as the stack expands.

The most important part of the graphics state records the transformation from current user coordinates to the

default system.

center()

This is the simplest coordinate change of all—it translates the origin of the coordinate system to the center of the

bounding box. It is usually a good idea to do this at the beginning of every page.

gsave()

Pushes a new copy of the current graphics state onto the graphics stack.

grestore()

Restores the previous graphics state.

It is a very good idea to sprinkle gsave()/grestore() pairs liberally around in a program, encapsu­
lating just about every graphics object you are dealing with.

Then you can manipulate that object without affecting others. If there is a mismatch at the end of a page between
the number of gsave and grestore operations on the page, πS will issue a warning by telling you the excess

number of gsaves or grestores. There is a serious error in your program if this happens, and you must locate
it. Problems caused by it will almost certainly only magnify as your program develops.

The rest of this section is concerned with coordinate changes. Understanding coordinate changes is the secret to

efficient and flexible drawing in πS.
We have seen several commands with coordinates as arguments (such as moveto). These are the coordinates of

points expressed in user coordinates , and in the process of drawinguser coordinates are transformed immediately
to default coordinates (and then in turn sooner or later to hardware coordinates). The translation from one of

these coordinate systems to another is done essentially in terms of a coordinate frame . This specifies the origin

PiScript manual (7:47 a.m. June 23, 2010) 18

of the coordinate system and the unit vectors (displacements) along its x­ and y­axes. A frame on the plane

determines the coordinates of every point on it.

A frame is determined by a point and two vectors. By convention, the origin of the frame is labelled as a2, the

unit vector along the x­axis as a0, and that along the y­axis as a1. We’ll see later the reasons for this odd indexing.

a2
a0

a1

It is important to keep in mind that coordinate changes act by changing the frame. We’ll see how this works in

the examples below, and coordinate systems are also discussed later on in the section on affine transformations.

It’s so important that I’ll repeat it:

Coordinate changes move the coordinate frame.

Now for examples.

translate(V)

Translates the origin of the coordinate system by the vector V . Thus translate(3,2)has this effect:

The point which used to be (3, 2) is now the origin in the new coordinate system. The unit vectors along the axes
are the same.

scale(s)

scale(s, t)

scale(unit)

Scales both x and y by s, or x by s and y by t. the argument unit can be "cm", "in", or "mm", and if used in default

coordinates will scale to that unit. In PostScript, line width scales along with all other dimensions, and if the scale

PiScript manual (7:47 a.m. June 23, 2010) 19

is different in x and y directions, line width will vary with the direction of the line. But in πS this is not true. A
scale change retains the current line width in absolute units, and even if the x and y factors are different, lines
remain uniform in width. I thought a long time about this, because the PostScript model has definite aesthetic

charm, but in truth I have never wanted non­uniform lines. In πS you can’t have them. (Well, you can, but I

won’t tell you how.) The figures below illustrate that all dimensions except line widths are scaled. Again, I am
showing the effect on a frame. Here is scale(3,2):

and here is what happens in PostScript when you draw a square after a non­uniform scale change:

Intriguing, but probably not your heart’s desire for everyday fare.

rotate(a)

rotate(P, a)

Rotates the current coordinate frame by angle a around the point P (or around the origin if P is not specified).

Here is the effect of rotate(P, math.pi/6)where P = (1, 1):

reflect(f)

reflect(f, v)

Reflects the current coordinate frame in the affine line ax + by + c, where f = {a, b, c}. If v is not specified,

it assumes v to be perpendicular to f = 0 with respect to the Euclidean metric. That is to say if f(a, b, c) then
v = [a, b]. In any case, reflection takes v to −v. This can be used in conjunction with the method

linethrough(P, Q)

This returns (a, b, c), where ax + by + c = 0 is the equation of the line through P and Q. The vector [a, b] is of
unit length. Here is the effect of reflect([2,-1,4]), which reflects in the line y = −2x + 4:

PiScript manual (7:47 a.m. June 23, 2010) 20

atransform(a0, a1)

atransform(a0, a1, a2)

atransform(a)

Applies an affine transform specified by the argument(s) to the current frame. The arguments for linear transform
specify a 2× 2matrix, while those for the affine one specify in addition a translation vector. Each ai is an array of

two numbers. The interpretation is that a0 and a1 are the coordinates with respect to the current frame of the unit

vectors of the new frame, and a2 is the new origin. This is the most general coordinate transformation allowed.
In case the argument is a single array, it specifies either (a0,0, a0,1, a1,0, a1,1) or (a0,0, a0,1, a1,0, a1,1, a2,0, a2,1) A
shear along the x­axis, for example, is atransform([1,0],[1,1]):

Coordinate systems in PostScript and πS are affine. A choice of coordinates is equivalent to specifying an affine
coordinate frame with its origin at the coordinate origin and its side along the unit vectors from it. Coordinate

changesmove the frame in the obviousway. Thus this command applies the affine transformation corresponding

to a to the current coordinate frame. This is discussed to some extent in Chapter 1 of Mathematical Illustrations
and in more detail (much more detail) in Chapter 4 of that book. I’ll say more about this later on.

I summarize: the coordinate change operations are scale, translate, rotate, reflect, and atransform.
Actually, there is a mathematical theorem that asserts that all we absolutely need are translations, scalings, and

linear rotations, but that would be awkward to depend on. It ought to give the idea, however, that you should

be careful when combining coordinate changes, because you can in principle wind up with any affine coordinate
transformation at all by combining simple ones. You can get weird effects.

Onemay change the coordinate systemwhile building a path, and the interpretation of coordinates in commands
moveto etc. is always in the current system. Thus

moveto(1,0)

rotate(math.pi/2)

lineto(1,0)

produces a line between the points that were (1, 0) and (0, 1) in the starting coordinate system. And thus

PiScript manual (7:47 a.m. June 23, 2010) 21

gsave()

newpath()

moveto(1,0)

for i in range(5):

rotate(2*math.pi/5)

lineto(1,0)

closepath()

stroke()

grestore()

Of course boxes are interpreted in the current coordinate system. So:

scale(2, 1)

newpath()

box(1,1)

stroke()

Sometimes after drawing a complicated figure, you realize it’s not placed quite correctly. Maybe what you want

to do is zoom into your figure to emphasize some particular feature.

zoom(P, Q, s)

This changes coordinates so as to zoom in on a part of your figure (or to move out from it). The scale change is s,
and what is currently P is moved to what is currently Q.

P

Q

P

Q

This is a simple combination of elementary coordinate changes:

def zoom(P, Q, s):

translate(Q)

scale(s)

translate(-P[0],-P[1])

explained by these pictures:

PiScript manual (7:47 a.m. June 23, 2010) 22

P

Q

P

Q

P

Q

Often you will want to move something to the center of your figure. For this you can use

currentcenter()

This returns the center of your figure in current coordinates.

Sometimes you will want to revert to the default coordinate system. This is done in slightly different ways by the

commands

revert()

lrevert()

The first reverts back to the original default coordinate system, with lower left corner as origin, basic unit 1Adobe
point. The second keeps the current coordinate origin, but sets the linear coordinates to the default. Usually, as

we’ll see in examples, you’ll want to revert only temporarily to default coordinates, so you should encapsulate

reversions in gsave()/grestore().

Both of theme return a copy of the graphics state current at the time it is called. Often you will want to use this

while you are in default coordinates, because it gives you access to the geometry of the coordinate system you
were using when you reverted. The basic idea is that

gs = revert()

P = gs.transform(1,1)

sets P equal to (x, y), where x, y are the coordinates in the default coordinate system of the point that was (1, 1)
when revertwas called. For example, lrevert is equivalent to

gs = revert()

translate(gs.transform(0,0))

The way this works is that the current graphics state specifies at any moment the transformation from the current

coordinate system to the original one, as well as a few other things that control how drawing is done, such as the
current line width. More precisely, either reversion returns an instance of a class GraphicsState that specifies

these. Probably the only thing you have to know about it is that

(GraphicsState).transform(P)

returns the transform of P into default coordinates by the coordinate transformation of the graphics state.

PiScript manual (7:47 a.m. June 23, 2010) 23

Why would you want to use reversion? Suppose you want to draw

The ellipse is easy to draw—you scale non­uniformly in x and y, and then draw a circle. But now you want to

place a small disk on top of the ellipse. So, let’s see: you want to draw a circle at the point whose coordinates are
(0, 1) in the coordinate system you have set up. But you want it to be a true circle, whereas if you draw a small

circle at (0, 1) without doing something tricky you’ll get another ellipse. This is the cue for reversion:

scale(40, 30)

newpath()

circle(1)

stroke()

gsave()

translate(0, 1)

lrevert()

newpath()

circle(2)

fill(1,0,0)

stroke()

grestore()

This raises a rather philosophical point. In mathematics, some parts of your figure are really part of the geometry
of the figure, like the ellipse in the figure above. But some parts are what I call meta-graphics —clues as to how

to interpret the figure. The disk at (0, 1) is probably one of these—the disk is something in the figure that marks

a certain place in it. It doesn’t have to be a disk, it just has to be small but visible. After all, the point it is marking
has, as Euclid tells us, no dimensions at all. So the disk is a kind of label, with symbolic but not literal meaning

in the figure, like the vertex labels A, B, etc. in geometry texts. The primary example of meta­graphics is text in

the figure.

9. Interlude—Pythagoras revisited

With coordinate changes and the utility box, drawing the Pythagoras configuration is a bit more elegant:

newpath()

box(-a, a)

stroke()

newpath()

box(b, -b)

stroke()

gsave()

translate(0,a)

A = math.atan2(a, b)

rotate(-A)

PiScript manual (7:47 a.m. June 23, 2010) 24

box(c, c)

stroke()

grestore()

Why do I think it’s elegant? Good programming is flexible and easy to understand, therefore easy to modify for
reuse. I think this fragment qualifies, even though it is elementary. The previous short code was good only for

squares, whereas here we are using box. And the use of a coordinate change to draw the square at an angle is a

trick I find generally useful, and in this case as in many others intuitive in the sense that it follows closely how
we perceive the figure.

10. Graphics states II. Other features

The most frequent manipulations of the graphics state involve coordinates, but there are other things involved,

too.

setcolor(r, g, b)

setcolor((r, g, b))

setcolor(g)

Sets the RGB (Red, Green, Blue) components of the current color or sets the current color to a shade of gray g in
the range [0, 1]. Gray g is equivalent to (g, g, g). THe current color is used in commands that require color but do

not set it themselves. These include stroke(), fill(), and text display.

red = (1,0,0)

setcolor(red)

I should mention that the clipping path is also part of the graphics state.

scalelinewidth(c)

Multiplies the current line width by c. The line width is part of the graphics state.

setlinewidth(c)

Sets the line width. The unit in which line width is measured is always points. It is equal to 1 point unless

changed with one of these two commands.

currentlinewidth()

Returns the current line width in points. This may be used to match the widths of arrows and lines when in the

default coordinate system.

setdash(a, b)

Sets current stroke pattern to a dashed line. Here a is an array of lengths setting the on/off pattern, b is the initial
offset. In the following figure, the side of the square is 1, a = [4, 4], b = 0.

The dimensions of the arguments are points, since stroking is rendered in default coordinates.

PiScript manual (7:47 a.m. June 23, 2010) 25

setlinecap(n)

setlinejoin(n)

These determine what the ends of the lines, and the places where lines join, look like. Here n = 0, 1, or 2. Both
0 and 1 are useful—the first (default) makes square line ends and sharp line joins, whereas the second rounds
things off. It is important in 3D drawing to set both of these to 1 (this is done by default in the πS 3D package)

and sometimes you want n = 1 for drawing arrows, but otherwise the default 0 is best. Here are the effects:

linejoin

linecap 0 1 2

0

1

2

The style with linejoin set to 0 is called a miter style, that with 1 is round , and that with 2 is beveled .

setmiterlimit(x)

This is the most technical of all of these commands. It affects how lines are joined in the miter style. The number

x must lie between 1 and∞. To understand how this works, I have to explain a bit about the geometry of bevels

and miters.

Suppose two lines join at angle α. The following diagram defines the miter length .

α

miter
length

The diagram also shows that

line width

miter length
= sin(α/2), miter length =

line width

sin(α/2)
.

The following diagrams illustrate how beveling works:

PiScript manual (7:47 a.m. June 23, 2010) 26

The effect of x setmiterlimit is to set an angle α below which line joins are beveled. The angle α is such that

1

sin(α/2)
= x, α = 2 arcsin(1/x) .

The larger x is, the smaller will be α. Some possible values of x and α:

x angle α
10 11.47◦

2 60◦√
2 = 1.414 . . . 90◦

1 180◦

In the last case, all joins are beveled. The default value is x = 10.

For thin lines, the subtle points of line joins are not apparent except when the angle of intersection is quite small

and the line join style is miter. In this case, they will certainly appear somewhat odd, and to avoid it you will

want to set the style to round or bevel. Bad effects are particularly prominent in 3D drawing, so when doing 3D
drawing I myself almost always set the line join style to 1 (round).

11. Arrows

Arrows are an extremely, maybe surprisingly, common feature of mathematical diagrams. I have therefore tried

to make the package flexible and easy to extend.

There is a philosophical problem with arrows. Are they geometry or meta­graphics? On the one hand, nearly

every use of an arrow will be symbolic, but on the other they are almost always tied closely to the geometry of
the figure they are embedded in. So there is no completely satisfactory answer. By default, they are geometry—

scaling dimensions will scale arrows in every way. How could it be otherwise? How could you scale an arrow’s

length without scaling its width? Reversion is one way to deal with this.

First of all let me explain the most basic routines.

setarrowdims(sw, hw)

setarrowdims(sw, hw, A, B)

This sets the basic dimensions of all arrows. The dimension sw is that of the shaft width, hw the head width. The

default for these is 1 and 3.6 in current length units, but any scale change by you will probably make you want
to change them. The numbers A, B are certain angle parameters of the head. The default is A = 24◦, B = 60◦.
What the tail of an arrow looks like is compatible with the current linecap style.

In the following figure, all dimensions of the arrow are indicated, along with the different types of tails you get
with distinct values of linecap.

PiScript manual (7:47 a.m. June 23, 2010) 27

ABsw hw

All arrows go from (0, 0) to P , so normally you’ll apply coordinate changes when using them.

arrow(V)

openarrow(V)

The first constructs an arrow with its tail at the current origin and tip at (x, y). The second makes similarly an

open arrow, as shown in a moment.

Here are some samples, with various values of sw and hw. In the last one, A = 48◦, B = 60◦.

Comment Line cap
Flat tail 0
Rounded tail 1
Extended square tail 2

Wide head, 90◦ cut 0

Stroked and filled 0
Different A, B 0

Note that stroking the arrow thickens it noticeably, with the same construction command. It is usually a good

idea to make line widths thinner when stroking an arrow.

The open arrows do not close up at the tail, so you can make double­ended arrows by fitting two together:

sw = 0.3

hw = 4*sw

setarrowdims(sw, hw)

gsave()

translate(0,-1)

newpath()

openarrow(4,0)

rotate(180)

openarrow(4,0)

stroke()

grestore()

gsave()

translate(0,1)

newpath()

openarrow(4,0)

stroke()

grestore()

quadarrow(a)

Builds an arrow using the argument a to assemble quadratic Bézier paths. The argument a is an array of pairs

{P, V }, or a single array of such pairs, where P is a point and V an oriented direction (either can be an array or a
Vector) the path takes from P . The sequence a must have at least two items in it, a beginning and an end. This is

a very flexible structure.

In the current version, the tip of the arrow comes very close to hitting the last point of a.

PiScript manual (7:47 a.m. June 23, 2010) 28

a = (

((-1,0), (1, 2)),

((0,0), (1,-2)),

((1,0), (1,2)),

((2,0), (1,-2)),

((3,0), (1,2)),

((4,0), (1,-2)),

((5,0), (1,2)),

)

newpath()

quadarrow(a)

fill(1,0.8,0.8)

(in suitable units) produces

It would not be hard to write a procedure that turned any parametrized path into a sequence of Bézier quadratic
curves, so one may contemplate constructing arrows that trace an arbitrary route.

texarrow(P)

This creates an arrow that looks like those produced in TEX, commonly used in commutative diagrams. The shaft
width is set by setarrowdims. In the figure below, the arrow on top is a magnified \longrightarrow from TEX,

the one on the bottom produced by texarrow.−→
One apparently controversial question is “How to do commutative diagrams?” Are they part of the text or
graphics images? The answer is, neither. Here, it is especially important that the text in the diagrams harmonize

with the enclosing text, but it is also true that good commutative diagrams require the flexibility in design that one
has only in graphics. Another, more minor, problem concerns what kind of arrows you want in these diagrams.

The harmonization business, at least, can be dealt with by suitable TEX prefix. As for arrows—well, you’re free to

roll your own!

arcarrow(P, Q, r)

arcarrow(P, r, A, B)

arcnarrow(P, Q, r)

arcnarrow(P, r, A, B)

The first forms build an arrow along an arc of radius r from P to Q. The direction is positive for arc, negative

for arcn. Choosing a negative r makes the arc around the long way. The second ones build it as an arc of a circle
centered at P .

PiScript manual (7:47 a.m. June 23, 2010) 29

12. Gradient fills

You can obtain curious effects such as this:

with

shfill(data)

Here data is an array of ‘colored triangles’. Each colored triangle is itself an array of ‘colored vertices’. A colored
vertex is an array (P, C) where P = (x, y) and C = (r, g, b). Each triangle is filled in by a spread of colors

interpolating those at the vertices. We shall see a good application of this in 3D drawing, in order to give an
illusion of a smooth surface, but it is occasionally useful even in 2D. Almost always, the (colored) vertices are

built first, then the triangles assembled from them, so colors of neighbouring triangles are consistent.

This is the simplest kind of gradient fill implemented in PostScript, and the technique applied in 3D is called
Gouraud shading. The significant part of the code that produced the figure above is

P = [(0, 1), (1, 0, 0)]

Q = [(c,-s), (0, 1, 0)]

R = [(-c,-s), (0, 0, 1)]

ds = [[P, Q, R]]

shfill(ds)

where c and s are cosine and sine of 30◦.

13. Under the hood

There are a huge number of commands to use inπS, but out of sight some kind of distillation is taking place. In

the end, a πS program boils down to a sequence of relatively simple commands with simple parameters. I have
already told you neither more nor less exactly what πS does: (a) it constructs paths and then (b) it either strokes

them, fills them, or incorporates them in the clipping path. Not in fact all that complicated, if you think about it.

So what I am going to tell you here should not be too surprising.

The major function of a πSprogram is to produce a list of commands and parameters. The commands make up a

very small list, and can be grouped according to task.

Constructs paths

newpath

moveto

lineto

curveto

closepath

Strokes, fills, clips
fill

stroke

cfill

cstroke

PiScript manual (7:47 a.m. June 23, 2010) 30

clip

shfill

Manages the special paths that are text

setfont

show

Controls how stroking etc. take place

setlinewidth

setlinecap

setlinejoin

setdash

setmiterlimit

setcolor

scalelinewidth

gsave

grestore

Miscellaneous

embed

insert

importps

importeps

comment

We have seen something of most of these. It’s not a very long list, and in fact it is even a bit redundant. There

don’t have to be two kinds of stroking and filling, one that uses the current color and one that sets its own, but it
seemed to me slightly more efficient to have them.

The virtue of this simple scheme is that, at least in principle, πS can output to a wide range of devices, including
for example PDF, not just PostScript.

One thing to notice is that there are no coordinate changes among the commands. As your program churns along,
all coordinates are rendered immediately in the default coordinate system. So, for example, an initial sequence

scale(2)

translate(1,1)

newpath()

box(10, 10)

stroke()

becomes

newpath

moveto 2, 2

lineto 22, 2

lineto 22, 22

lineto 2, 22

closepath

stroke

Sure enough, all coordinates in the final array are in the initial default coordinates. What is also true, although

not evident in this case, is that the output is verbose. For example, the single command beginpage expands to

gsave

setlinewidth 1

PiScript manual (7:47 a.m. June 23, 2010) 31

setlinecap 0

setlinejoin 0

setdash [], 0

setmiterlimit 10

setcolor 0, 0, 0

newpath

moveto 0, 0

lineto 100, 0

lineto 100, 100

lineto 0, 100

closepath

clip

Why am I telling you this? Well, sometimes, if very rarely, you can figure out what’s wrong with your program

by scanning this low­level translation. You can get it by defining a variable to be the return value from init: ps

= init(...) and then when you feel like seeing what you are getting print ps. This is how I produced the
examples above! Command arrays as I describe here are really at the core of πS. THe return value from init

is an instance of the Python class Canvas, as are the return values from other commands. The main function
of a Canvas is to hold a command array. Eventually, πS will allow you to draw Canvases in a wide variety of

configurations.

PiScript manual (7:47 a.m. June 23, 2010) 32

Part 2. Text in figures I. T EX

There are two quite different ways to put text in πS figures. One allows you to embed TEX in them. The great

virtue of this is that you can use TEX to handle the formatting of the text, especially of mathematics. The other is
to use the enhanced graphics capabilities of PostScript to place non­mathematical text in possibly more creative

ways. These two different approaches are being slowly merged in successive versions of πS.

14. Placing TEX Text

The basic object for placing TEX labels into a figure is a TexInsert. It has an existence independent of where it

is to be placed, and includes in its data dimensions (such as width) and its own coordinate system, as well as the
text to be placed.

texinsert(texstring)

texinsert(texstring, label)

These create and returns a TexInsert object. The optional label is a string that will function as part of the

name of the TEX and .dvi files produced. Often you will use this command to assign a variable (as in t =

texinsert("x")), and then do something with it.

There is one extremely important thing to watch out for when making TEX inserts:

In writing TEX macros in a string that’s an argument for a TEX insert, \ should always be written as \\.

This is because the escape \ is used in Python to access special characters. Thus \n in a Python string means

‘linefeed’, and is used in Linux systems to mark the end of a line of text. For example, to put π in a TEX insert one
should write $\\pi$. It is not in fact always necessary, and not even in this case. There are only special situations

in which the \ gets lost. But putting in \\ never fails.

Usually an inserted fragment of TEX is to be considered meta­graphics—it has symbolic meaning, and is not part

of the true graphics—but sometimes not. Depending on how it is to be considered, insertion takes place with one

of the two commands place (symbol) or embed (geometry).

place(t)

place(t, P)

Places the TexInsert t in your figure, considering it as meta­graphics. A TexInsert has an origin, which is by
default at the origin of the first character in the TEX string. With the second option πS puts this origin at the

point P (specified in current coordinates). If you use the first option, not specifying P , it is placed at the current

coordinate system origin.

The simplest usage:

place(texinsert("$y=x^{2}$"), 1, 1)

y = x2

(Here and in following figures there has been a preliminary scale(10), so that each square in the unit grid is

10 × 10 points.) The command place places a TexInsert scaled according to default coordinates. (As we’ll see

PiScript manual (7:47 a.m. June 23, 2010) 33

in a moment, this is another constructive lie.) Thus in the following case, the appearance of the TEX insert is the

same as it was before, except that scaling user coordinates moved its origin:

scale(2)

t = texinsert("$y=x^{2}$")

place(t, 1, 1)
y = x2

We’ll look at more examples in a moment.

embed(t)

This embeds t as a graphics object, applying current coordinate changes to it. You have to be pretty careful with
it. In the following figure, there was an initial scale(10) (off screen, so to speak) to make the grid of 1 × 1
squares. Now TEX fonts are themselves used at a nominal 10 point size, and with a scale factor of 10 this makes

a font of nominal sioze 100 points. So the TEX at 10 points comes in rather large. Note that there is no embed(t,
P) option.

t = texinsert("$y=x^{2}$")

translate(1, 1)

embed(t) y =
The point is that text in figures is not normally part of the graphics, but is what I call part of itsmeta­graphics. It
is for this reason that the default behaviour of πS, with how it shows TEX inserts as with how it strokes lines, is to

place it in the default coordinates. We shall see, however, that even when TexInserts are symbolic there is a use

for embed.

15. A TEX insert as a graphics object

Now to tell you how I lied.

Let me first explain the problem that we have to deal with. Suppose you have graphed the function y = x2, and

you want to label the graph. You could just do something like this:

y = x2

but then if you decided also to add the graph of y = x2/2 you’d have to move the label out of the way of the new

graph. And if you wanted also to label the new graph, you’d probably think about this for the original label:

PiScript manual (7:47 a.m. June 23, 2010) 34

y
=

x
2

This in fact illustrates a good general principle—labels should be placed near what they are labeling.

But how can we do this? We’ll see later one solution, but in this situation it is overkill. Here there is a relatively

simple solution, but one that uses a new trick. We apply geometric transformations to the TexInsert! I explain in
several steps. First we place out text at some point on the curve.

t = texinsert("$y = x^2$")

place(t, 0.5, 0.25)
y = x2

But now before doing that, we translate the TexInsert up by 4 points.

t = texinsert("$y = x^2$")

t.translate(0, 4)

place(t, 0.5, 0.25) y = x2

And finally, after we do that translation we rotate the TexInsert.

t = texinsert("$y = x^2$")

t.translate(0, 4)

t.rotate(0.86)

place(t, 0.5, 0.25)

y
=

x
2

In effect, each transformation changes the TexInsert, but not its origin. Think of it as pushing the contents of the

Insert around inside a fixed region.

You can change the size of a TEX insert, too, and change its shape in other ways. Here are the allowed transfor­

mations:

PiScript manual (7:47 a.m. June 23, 2010) 35

(TexInsert).translate(...)

(TexInsert).scale(...)

(TexInsert).rotate(...)

(TexInsert).reflect(...)

(TexInsert).atransform(...)

The dots ... mean that the arguments are the same as they were for earlier coordinate changes. However, the
meaning of these is very different from the coordinate changes. Here, we are transforming the contents of the

TexInsert around, whereas before we were changing the current coordinate system in which we were drawing.
I’ll explain in more detail later on, when I discuss coordinate systems, how this works.

16. Saving for the future

When creating a TEX insert, πS (1) creates a TEX file, (2) runs TEX on it, and then (3) processes the .dvi file this

produces to get a command array, which (4) it puts in a TexInsert object. By default it will then delete the TEX and

.dvi files, which it doesn’t need any more. You can direct πS to save these, however.

settexsave(b)

The argument here is either True or False, and while saving is set to True then TEX files produced by texinsert

will be saved. The advantage of this is that when the same program is run again, it will compare the TEX file it
produced on the last run with the one it would create on this one, and if the two are the same it won’t run TEX

again. Instead of producing a new .dvi file, it just reuse the .dvi file it sees. Running TEX is one of the more
expensive parts of πS (in currency of time), and this can make your program run faster.

File saving takes place in one of two ways. One is to set a global variable texsave to be True, in which case every

texinsertwill save stuff. Or, you can use the optional label in texinsert. In the first case the saved files will
be assigned file names starting with tmp and incorporating successive numbers, except that the labeling option

always overrides this. Of course, you can revert to not saving files with settexsave(False).

If files are saved, it is up to the user to get rid of obsolete TEX and .dvifiles later on. Not running TEXunnecessarily

speeds up things noticeably, although comparison of old and new TEX files is not extremely fast. In TEX inserts
πS will usually make temporary files that begin with tmp and have as prefix .dvi or .log or .aux—the usual
garbage files that TEX creates. Again, if production is interrupted these may be hanging around, and should be

deleted.

17. The geometry of a T EX insert

A TEX insert also has several data attached to it in addition to its text, mainly specifying certain points of its
geometry.

(a) bbox

(b) width

(c) height

(d) depth

(e) origin

(f) a set of locations stored in an array mark

y =

∫

x dxorigin

height

depth

width

mark[0]

I’ll explain the mark later, but I should tell you right now that the TEX placed here is $$y = \int \mark x \,

dx$$ A TEX insert has its own coordinate system, in which the origin is by default the left bounding point of

the first character that’s put into it. This location of the origin works well to allow alignment of different texts.

PiScript manual (7:47 a.m. June 23, 2010) 36

You have to be aware, though, that the origin of a character, in this case the integral sign, might not be what you

expect:

∫

x dx

origin

Since this is probably not where you want the origin to be, here is a good place where you want \mark x to

help you locate your preferred origin on the baseline just under xdx. The coordinate system of a TexInsert is

rectangular, and its unit is one point, at least initially. The height is the difference in height between the top of the
bounding box and the origin, the depth is the difference in height between the origin and the bottom. All these

data, including the bounding box bbox, are expressed in this local coordinate system. The bounding box can be

used, among other things, to blank out space behind a TEX insert, as in this figure:

y =

∫

x dx

Normally, however, you want to blank out a bit more than just the tight bounding box, as on the left below. Or
you might even want to subsequently move it around, as on the right:

y =

∫

x dx y
=

∫

x
dx

The good news is that you can do this, and in fact draw all kinds of things based on the ‘internal geometry’ of
a TEX insert. The bad (well, not so bad) news is, doing so is not quite straightforward. There are several ways

to do it, but I’ll explain only one. As you might have guessed already, it’s a good task for reversion to default
coordinates. Here is how to produce the figure on the right:

PiScript manual (7:47 a.m. June 23, 2010) 37

t = texinsert("$$y=\int x\, dx$$")

gsave()

lrevert()

rotate(1)

b = t.bbox

ds = 2

newpath()

boundedbox(b[0]-ds, b[1]-ds, b[2]+ds, b[3]+ds)

closepath()

fill(1)

stroke(0.7)

embed(t)

grestore()

y
=

∫

x
dx

One mystery might be why embed rather than place. But place always places in the default coordinates, unless

the TexInsert has been transformed. So with place instead of embed you get something you probably don’t want:

y =

∫

x dx

18. The TEX environment

The way texinsert executes depends on the TEX environment in πS , which consists of three items—the TEX

command (the name of a variant of TEX itself), the TEX prefix, and the TEX postfix. In this situation, a temporary
TEX file is assembled from the prefix, your TEX string, and the postfix, and then the command is run on that file.

These three items are normally read from a configuration file, but they can also be set dynamically.

The basic πS package contains the configuration file TexConfig.py in which a standard configuration is set, and
this is the default. In this file the TeX command is set to “latex", the default LATEX prefix is

\documentclass[12pt]{article}

\pagestyle{empty}

\input amssym.def

\newcommand\color[1]{\special{color{#1}}}

\newcommand\uncolor{\special{uncolor}}

\newcommand\lmark{\special{mark}}

\begin{document}

and the postfix is

\end{document}

This means that when, for example, you put t = texinsert("$y = x^2$) in your program a TEX file like this
is produced:

\documentclass[12pt]{article}

\pagestyle{empty}

\input amssym.def

PiScript manual (7:47 a.m. June 23, 2010) 38

\newcommand\color[1]{\special{color{#1}}}

\newcommand\uncolor{\special{uncolor}}

\newcommand\lmark{\special{mark}}

\begin{document}

$y = x^{2}$

\enddocument

LATEX is run on it, eventually to produce an .eps file to be imported into your own .eps file.

You might be puzzled by the new command definitions, but I’ll explain those later. The rest of this default prefix

is pretty simple, a kind of basic minimum.

If this looks OK to you, at least for the moment, you can stop reading this section right now. Come back
to it only when you are dissatisfied with your TEX environment in πS.

There are roughly two ways to change your TEX configuration. One is to set the TEX prefix, command, or postfix

in your program. The other is to change the configuration file that is read.

Here is a brief outline of what πS does to set up your TEX environment. (1) First of all, if you have set the prefix,

etc. in your program it will use what you have set. (2) Otherwise, it looks for a configuration file with a certain

name. This can be either the default name TexConfig.py, or it can be one you have specified. (3) Whatever the
name of the configuration file that has been set,πS looks for a file of that name in one of three directories, in order:

(a) your current working directory; (b) your own personal πS configuration directory; (c) the global πS directory.

I’ll postpone explaining how to set the prefix etc. in your program, because using configuration files is usually

much more convenient.

• Here is the code from the default file:

from piscript.Tex import TexEnv

def getTexEnv():

p = "\\documentclass[12pt]{article}\n"

p += "\\pagestyle{empty}\n"

p += "\\input amssym.def\n"

p += "\\newcommand\\color[1]{\\special{Color{#1}}}\n"

p += "\\newcommand\\uncolor{\\special{unColor}}\n"

p += "\\newcommand\\lmark{\\special{mark}}\n"

p += "\\begin{document}\n"

q = "\n%\n\\end{document}\n"

c = "latex"

return TexEnv(p, q, c)

A TEX configuration file must define a procedure getTexEnv() that returns the three strings that make up the
prefix, postfix, and command. (Note here the use of \\ for TEX macros.) My advice on how to make one up is to

run TEX (by hand, so to speak) on several sample TEX files with different prefixes until you get one that you are

happy with.

• When you first set upπS, you shouldmake a directory to be your own ‘local’πS directory, inwhich you put code

that lots of your programs require. You should define an environment variable LOCALPISCRIPTDIR to be that
directory. Inside that you shouldhave a subdirectoryconfigs,which in turn contains an emptyfile __init__.py.

You should put your frequently used TEX configuration files in there. For example, on my Linux machine this is
the hidden directory .piscript in my home directory, and the directory listing of ~/.piscript/configs is

__init__.py

BoldMathTexConfig.py

PlainTexConfig.py

PiScript manual (7:47 a.m. June 23, 2010) 39

TexConfig.py

PSTexConfig.py

• The file PlainTexConfig.py mentioned above defines a Plain TEX environment with prefix, postfix, and

command

\input amssym.def

\def\color#1{\special{color{#1}}}

\def\uncolor{\special{uncolor}}

\def\mark{\special{mark}}

\nopagenumbers\n

\bye

tex 1> /dev/null

The command suppresses some (but not all) superfluous TEX output.

If you suppress all TEX output, then when there are errors in your TEX file they will manifest themselves
by mysterious halts. In this case, pressing Enter a few times will usually get things to come to a conclusion.

Here, for example, is a file PSTexConfig.py that I use, calling for it with settexenv("PSTexConfig").

def getTexEnv():

p = "\\input amssym.def\n"

p += "\\def\\color#1{\\special{color{#1}}}\n"

p += "\\def\\uncolor{\\special{uncolor}}\n"

p += "\\def\\mark{\\special{mark}}\n"

p += "\\nopagenumbers\n"

p += "\\input psfont.defs\n"

q = "\n%\n\\bye\n"

c = "tex 1> /dev/null"

return TexEnv(p, q, c)

Here, psfont.defs is a file defining TEX macros that allow me to use Adobe fonts in TEX, roughly like this:

\font\tenrm=pplr at 9.5pt

\font\tensl=pplro at 9.5pt

...

\rm

But I am not going to discuss in detail here how to use non­standard fonts in TEX. It is a potentially endless topic.
All you need to know is that you ought to be able to reproduce your normal TEX environment exactly inside πS.
• You can do this with the commands

settexprefix(s)

settexpostfix(s)

settexcommand(s)

settexenv("plain")
settexenv("latex")

settexenv(texconfigfile)

settexenv(prefix, postfix, command)

In the first three, s is a string, and so are the arguments in the last one.

PiScript manual (7:47 a.m. June 23, 2010) 40

One option for texenv is the prefix of a TEX configuration file, more or less similar to the global TexConfig.py.

It can refer to a file in either the current working directory, the directory LOCALPISCRIPTDIR/configs, or the
principal πS directory. These are searched in that order. The argument "plain" is equivalent to "PlainTexConfig",

"latex" to "LaTexConfig".

In summary, you really do have just about complete control over how TEX is executed in πS.

19. Specials in T EX inserts

The command texinsert returns an instance of the Python class TexInsert. The basic parameter is a single

string. A TEX file is made up from this string, preceded by a prefix, and followed by a postfix. As I have already

mentioned, the default prefix is

\documentclass[12pt]{article}

\pagestyle{empty}

\input amssym.def

\newcommand\color[1]{\special{color{#1}}}

\newcommand\uncolor{\special{uncolor}}

\newcommand\lmark{\special{mark}}

\begin{document}

In plain TEX, mark replaces lmark. A TEX file is created from a TEX insertion, and a TEX command, creating a .dvi

file which is read into a program that creates an .eps file from it.

All this has been said before. What I want to say that’s new is that certain TEX specials are allowed here. Right

from the very beginning, Don Knuth realized people might want to expand TEX to give it extra capabilities. You

have probably already seen examples, because embedding a PostScript figure into a TEX file is a special command.
Other frequently used ones are involved in color changes, say with the package colordvi.

TEX specials are ignored by TEX itself and passed on to the next stage in interpretation. In particular, any TEX
special you use in your program must not only be defined in TEX, but they must be interpreted down the line.

What this means here is that specials you use in πS must be pre­defined in it. (Although now that I think of it,

I foresee that sooner or later πS will allow you to write your own specials.) The ones currently interpreted are
mark, color, and uncolor.

The special \mark places the current point’s coordinates in a list attached to the TexInsert structure, and the pair
\color/\uncolor allow temporary color changes within the TeX insert. These must occur in matched pairs.
Here is a sample use of the color macros:

t = texinsert("a\\color{1 0 0}b\\uncolor c")

I might have implemented the standard color macros in colordvi.tex, but I decided that the standard colors
provided there weren’t interesting enough, and that the cmyk (Cyan, Magenta, Yellow, blacK rather than Red,
Green, Blue) conventions it follows weren’t intuitive for most users.

PiScript manual (7:47 a.m. June 23, 2010) 41

Part 3. Text in figures II. PostScript

There are also available inπS a small number of methods that will place ordinary PostScript strings in your figure.

In earlier versions of πS these methods were very closely tied to PostScript programming, and certain features
were quite awkward. In the current version, they are tied to font handling in TEX.

These methods are not as versatile as using TEX to display text, but they are much more efficient, and often this
is a more important consideration than fine control.

20. Placing PostScript strings

Abasic description ofwhat you can dowith thesemethods is choose a current font at a specified size, then display
simple text at locations you specify. What you do not have is sophisticated text placement.

setfont(f, s)

Sets the current font to be f , with nominal size s. The size is usually interpreted in true points, as we’ll see in a
moment.There are a small number of fonts always available in PostScript, and in practice one should normally

use only those. (Later versions of πS will make this advice obsolete.) They are

Times-Roman

Times-Italic

Times-Bold

Times-BoldItalic
ABC

Helvetica

Helvetica-Oblique

Helvetica-Bold

Helvetica-BoldOblique

ABC
Courier

Courier-Oblique

Courier-Bold

Courier-Bold-Oblique

ABC

Most sites also have available in addition the fonts

Bookman-Demi

Bookman-DemiItalic

Bookman-Light

Bookman-LightItalic

ABC

AvantGarde-Book

AvantGarde-BookOblique

AvantGarde-Demi

AvantGarde-DemiOblique

ABC

Palatino-Roman

Palatino-Italic

Palatino-Bold

Palatino-BoldItalic
ABC

PiScript manual (7:47 a.m. June 23, 2010) 42

NewCenturySchlbk-Roman

NewCenturySchlbk-Italic

NewCenturySchlbk-Bold

NewCenturySchlbk-BoldItalic

ABC

ZapfChancery-MediumItalic

ZapfDingbats ABC
There are lots of other fonts available, too—all those that come with your TEX distribution. This includes all the
basic TEX fonts such as CMR10, but probably also a large selection of less standard ones.

dimensions(s)

Here s is a string. This returns thewidth, height, and depth of the string if placed in the current font at the current

font size. It returns these as a triple (w, h, d).

show(s)

show(a)

The first displays the string s at the current point in the current font. Normally this is immediately preceded by
a moveto. The string is set under the same rules as TEX inserts to which embed is applied. The second is similar,

except that a is an array of integers instead of characters. Thus

setfont("Helvetica-Bold", 12)

s = "Hello!"

d = dimensions(s)

moveto(100,100)

rmoveto(-d[0]/2, -d[1]/2)

show(s)

places the string “Hello” in Helvetica­Bold nominal size 12 points, centred at the point (100, 100).

The following program will let you look at a whole segment of a font (in this case, CMR10):

from piscript.PiModule import

*

init("cmr", 200,100)

beginpage()

cw = 12

ch = 12

gsave()

translate(0.5*width(),8*ch)

translate(-cw*8,-4)

setfont("CMR10", 12)

for i in range(128):

m = i/16

n = i % 16

moveto(n*cw,-m*ch)

show([i])

grestore()

endpage()

finish()

Γ ∆ Θ Λ Ξ Π Σ Υ Φ Ψ Ω ff fi fl ffi ffl
ı  ` ´ ˇ ˘ ¯ ˚ ¸ ß æ œ ø ÆŒØ
 ! ” # $ % & ’ () * + , - . /
0 1 2 3 4 5 6 7 8 9 : ; ¡ = ¿ ?
@ A B C D E F G H I J K L MN O
P Q R S T U V WX Y Z [“] ˆ ˙
‘ a b c d e f g h i j k l m n o
p q r s t u v w x y z – —˝ ˜ ¨

PiScript manual (7:47 a.m. June 23, 2010) 43

There is a list of fonts nominally available in the file FontList.txt in the directory examples that comes with πS.
You can update it for your system by running listfonts in that directory. On my machine, there are more than
600.

PiScript manual (7:47 a.m. June 23, 2010) 44

Part 4. Paths

For some purposes, it is useful to build and store a path without drawing it.

21. Constructing and using paths

I have said that at bottom the output from every πS program is an array of relatively simple commands and

parameters. There are a number of commands that take advantage of this fact, and go a bit further.

In the original version of πS, the program itself was tied closely to PostScript. This meant, among other things,

that some of the output was definitely PostScript specific, in the sense that it relied on PostScript for certain tasks.

One of these was a command that enabled the user to outline characters in a PostScript font, and along with it
were commands to shift a displayed string in useful ways. These did not use πS structures for this, because πS
did not have at that time practical capability to poke around in fonts. Much of the latest revision was to add this
capability, at least to some extent. At the moment this part of πS is still changing, but the interface to it should

remain the same through forthcoming changes.

Every character in a PostScript font is a path:

It can be accessed by the command

charpath(s)

Here s is a string. This returns an array of the sort I have said πS puts out more generally. It amounts to an array
of drawing commands that draws the outlines of the characters in the string. It is meant mainly as an internal

method in πS that can be used to include the outlines of strings in any πS fragment, for example to assemble an

entire TEX fragment as a single path. At the moment the interface to using it is . . . ugly.

PiScript manual (7:47 a.m. June 23, 2010) 45

def m(x, y):

moveto(x, y)

def l(x, y):

lineto(x, y)

def c(P1, P2, P3):

curveto(P1, P2, P3)

def cl():

closepath()

setfont("CMR10", 56)

newpath()

p = charpath("ABC")

p.set(MOVETO, m)

p.set(LINETO, l)

p.set(CURVETO, c)

p.set(CLOSEPATH, cl)

p.execute()

fill(0.8,0, 0)

stroke()

The ultimate point of this sort of thing is that one often one wants to draw some figure transformed, and it is

straightforward to transform paths given as arrays of the kind described here. We shall see later an example of
transforming a 2D path into 3D, but it is easy to think up other examples of this technique.

Essentially, all compound objects in πS are now paths of the sort I am talking about. For example, Arrows and
arcs of circles are in this category. πS introduces a Python class Arrow and this is the class through which arrows

of all kind are constructed from a head, a shaft, and a tail. Strings are also in this category, and as I have said
in the future I expect to be able to render an entire .dvi file as a path, which would allow you to deal with TEX

output very flexibly.

Another useful function is

dimensions(s)

which returns an array (w, h, d), where w is the width of the string, h its height, and d its depth.

PiScript manual (7:47 a.m. June 23, 2010) 46

Part 5. 3D drawing

There is a simple library of 3D operations in the PiModule package. These can be accessed by calling init3d

instead of init, with the same arguments.

22. Simple 3D drawing

The 3D environment is more complicated than that in 2D. The eye is assigned a fixed location along the z axis,
looking down the negative z­axis. The images one actually sees are those you get by projecting onto the plane

z = 0. There are operations for drawing lines in 3D, but also some more complicated ones for seeing surfaces,

with some ambient lighting. In designing this package, I was not concerned with realistic effects, but providing
just enough features to help the human eye interpret 3D images. As in 2D, coordinate changes move the base

frame, which starts out as the standard rectangular coordinate system.

In drawing 3D objects, it is usually best to set line joins to be 1, or weird things will appear.

Coordinate systems.

gsave3d()

grestore3d()

There is a stack that keeps track of the 3D graphics state in the same way the one in 2D does. At the moment it

stores only of the coordinate system. It is completely independent of the 2D graphics state, and is not changed
with new pages.

seteye(e)

Here e = [x, y, z, w] is a 4D array (or, as in all these commands, a Vector). The coordinates are interpreted as
homogeneous, which means that scaling them by a positive scalar doesn’t change the interpretation. (I’ll say

something about the mathematics of homogeneous coordinates later on.) At the moment x and y must be 0, and
bothw and z ought to be positive unless youwant to see weird things. Ifw = 0 the eye is set at infinity, otherwise
at the 3D point (0, 0, z/w). Internally πS3d works entirely with homogeneous 4D coordinates, because it makes

computations involving perspective very simple.

scale3d(a,b,c)

Scales x, y, z.

rotate3d(a, A)

Rotates by angle A around axis a = [x, y, z]. Angles are interpreted as degrees or radians depending on the angle
mode.

translate3d(x, y, z)

translate3d([x,y,z])

translate3d(V)

Translates the coordinate frame.

Drawing 3D paths.

moveto3d(x,y,z)

moveto3d([x,y,z])

moveto3d(P)

Starts a path.

rmoveto3d(V)

PiScript manual (7:47 a.m. June 23, 2010) 47

lineto3dP

curveto3d(P1,P2,P3)

Here the arguments are 3D points, assumed to lie in a plane.

rlineto3d(V)

closepath3d()

Example. This shows on successive pages a rotating square frame, with the eye set at (0, 0, 1):

init3d(".ps", 250, 150)

seteye([0,0,10,1])

for i in range(36):

beginpage()

center()

scale(100)

translate(0,-0.5)

newpath()

moveto3d(0,0,0)

lineto3d(1,0,0)

lineto3d(1,1,0)

lineto3d(0,1,0)

closepath3d()

stroke()

endpage()

rotate3d([0,1,0], math.pi/18)

finish()

23. Visibility and lighting

In real life, what we see is affected by ambient light. Opaque objects hide other objects. A simple form of these

phenomena are taken into account here.

geteye()

This returns the virtual eye , which is the eye placed where it would be if the coordinate system were inverted.
Thus if the coordinate system rotates around an axis a by angle A, the virtual eye rotates around a by −A. The

virtual eye is used to check visibility and lighting. See Chapter 10 of Illustrations . What happens is illustrated in
these figures:

PiScript manual (7:47 a.m. June 23, 2010) 48

eye

rotated
object

virtual eye

In the following program, as the square rotates one way, the virtual eye rotates the other. When the virtual eye is

on one side of the original square, the real eye, which is fixed, is on the same side of the rotated square. On one
side it sees red, and on the other blue.

from piscript.PiModule import *

init3d("rotatingsquare.ps", 250, 150)

import math

seteye([0,0,10,1])

for i in range(36):

beginpage()

center()

scale(100)

translate(0,-0.5)

e = geteye()

newpath()

moveto3d(0,0,0)

lineto3d(1,0,0)

lineto3d(1,1,0)

lineto3d(0,1,0)

closepath3d()

if e[2] > 0:

fill(1,0,0)

else:

fill(0,0,1)

stroke(0)

endpage()

rotate3d([0,1,0], math.pi/18)

finish()

setlight(L)

The vectorL is also 4D, with last coordinate required to be 0. Sets the direction fromwhich light comes. Internally,

the light is a unit vector.

getlight()

PiScript manual (7:47 a.m. June 23, 2010) 49

Returns the virtual light source.

In the next example, the square is shaded very crudely according to where the light is located with respect to the

normal vector of the surface that is visible.

init3d("litsquare.ps", 250, 150)

seteye([0,0,10,1])

setlight([-1,1,0.5,0])

for i in range(36):

beginpage()

center()

scale(100)

translate(0,-0.5)

e = geteye()

L = getlight()

newpath()

moveto3d(0,0,0)

lineto3d(1,0,0)

lineto3d(1,1,0)

lineto3d(0,1,0)

closepath3d()

if e[2] > 0:

s = (1+L[2])*0.5 + 0.5

fill(s,0,0)

else:

s = (1-L[2])*0.5 + 0.5

fill(0,0,s)

stroke(0)

endpage()

rotate3d([0,1,0], math.pi/18)

finish()­

24. Convex surfaces

In πS as in most computer graphics programs, a surface is an assembly of flat polygons. Maybe a really huge
number of small polygons, in an attempt to simulate a smooth surface such as a sphere, but still ultimately an

assembly of polygons. After all, even in nature the apparent smoothness of surfaces is an illusion.

Howwe see surfaces is a function both of the qualities of the surface itself and the ambient light. πS is not interested

in providing realistic illusions, but only in offering enough clues to the human eye so that it understands roughly

what it is seeing; it is lucky (for πS) that the human eye is easily fooled, and in fact cooperates happily in being
fooled.

πS offers two kinds of surfaces, polyhedral and smooth. A polyhedral one is just an assembly of its faces, where
each face is constructed from a flat 3D polygon and a color. The polygon is oriented, which means that from it

one can construct its normal function Ax+By +Cz +D which is 0 on the face and with the unit vector [A, B, C]
pointing outwards. The normal function is used to test visibility and also to determine shading. If (r, g, b) is

the face’s color, then the displayed color is calculated in the following way: let d be the dot­product of the light

source and the normal vector [A, B, C]. Because both are normalized, this lies in the range [−1, 1]—it is 1 if the
light source is perpendicular & exterior to the face and −1 if it is opposite. Thus (1 + d)/2 lies in [0, 1], where

0 means no light. Finally, what I call a fudge function (in the form of a Bernstein polynomial) is applied to this

to get a number s again in [0, 1], and the color displayed is [sr, sg, sb]. Crude, but adequate. I’ll say more about
Bernstein polynomials later on in the section on shading. Here are the relevant functions:

PiScript manual (7:47 a.m. June 23, 2010) 50

convexsurface(f)

Here f is an array of faces

paint(s)

Here s is a convex surface.

face(p, c)

face(p, c, ...)

Here p is an array of 3D polygons, c = (r, g, b). The ... can be anything. For example, to get smooth shading,

add an array of normals to the vertices to get a smooth convex surface.

reverse(f)

Changes the orientation of the face by multiplying its normal function by−1.

setshading(f, y)

Here f is a face, y is an array of at least 3 numbers in [0, 1], parametrizing a Bernstein polynomial.

Here is an example.

seteye([0,0,7,1])

translate3d(0,-2,0)

grey = 0

red = Cube([1,grey, grey], 1, [0,0,0])

for i in range(4):

beginpage()

center()

scale(64)

translate(0, 2)

paint(red)

endpage()

rotate3d([0,1,0], math.pi/16)

Put back in the rotating square.

Note the reversal of orientation in the second face. In 3D, it is often important to choose the exact position of a

figure in order to see it clearly. The kind of primitive animation done here helps one decide which is best. After
a choice has been made, one can reduce the number of loops to 1.

smoothconvexsurface(f)

A smooth surface is again an assembly of polyhedral surfaces, but now each vertex is assigned a normal and a
color. These are used to interpolate, using the shfill of PostScript, to color each face. The only example of this

currently done is the sphere. The parameter f here is an array of triangles [p, c, n]where n is the array of the

three unit normals at the vertices. The only example I have of this is a unit sphere:

PiScript manual (7:47 a.m. June 23, 2010) 51

sphere(c, n)

Here c is the color, and 1 ≤ n ≤ 4 is an integer that controls how many times the icosahedron is subdivided to
make the spherical polyhedron. Higher values for n mean a smoother surface.

In the near future, πS will let you map any 2D picture into 3D. At the moment, it has limited but promising

capability in this direction.

25. Shading

I’ll now look at how to darken or lighten the color of a surface in 3D, according to how it is affected by a light
source. As I have said before, the purpose of this inπS is not to make scenes look realistic, but just to help the eye

understand what it is seeing.

The light source is specified by a 4D vector L = [a, b, c, 0], where the 0 signifies that it is at ∞. This vector is

normalized so as to have length 1. The orientation of [a, b, c] matters, so this is what I shall call later an oriented

homogeneous vector; equivalence of light sources is ruled by positive scalar multiplication. To a polygonal
fragment of a surface is associated its normal function ν = [a, b, c, d], characterized by the property that the affine

function ax + by + cz + d vanishes on the surface, and the fragment is oriented so that [a, b, c] points outwards.

To determine darkening, we start by computing the dot product d = L•ν. The cosine rule tells us that if θ is the
angle between L and ν then

cos θ =
L•ν

‖L‖ ‖ν‖ = d ,

so that −1 ≤ d ≤ 1. It is −1 when L and ν are opposite, in which case the surface should be dark, and it is +1
when the two are the same, in which case it should be bright. In general, we should expect the brightness to be a

monotonic function of d, and in the range [0, 1] so as to give color parameters in the right range.

So we must ask, how can one offer a good choice of functions

f : [−1, 1] → [0, 1] ?

The simplest function of this type is simply d 7→ (1+d)/2. But this turns out not to be psychologically satisfcatory.
What other good monotonic functions from the unit interval [0, 1] to itself can one use?

I have chosen the class of Bernstein polynomials for this purpose. A Bernstein polynomial of degree n is one of
the form

By(x) =

n
∑

0

yi

(

n

i

)

(1 − x)ixi ,

PiScript manual (7:47 a.m. June 23, 2010) 52

where y = (yi) is an array of arbitrary coefficients. Examples are the linear, quadratic, and cubic ones

(1 − t) y0 + t y1

(1 − t)2 y0 + 2(1 − t)t y1 + t2 y2

(1 − t)3 y0 + 3(1 − t)2t y1 + 3(1 − t)t2 y2 + t3 y3 .

These were invented by the Russian mathematician Sergei Bernstein in the early 20th century to provide a

construction proof of a sequence of polynomials approximating an arbitrary continuous function on the unit
interval (a theorem originally due to Karl Weierstrass in a more abstract form).

Theorem. If f(x) is an arbitrary continuous function on [0, 1], then the functions

fn(x) = By(x) (y = [f(0), f(1/n), f(2/n), . . . , f(1)])

converge to f as n → ∞.

In other words, arbitrary continuous functions may be approximated by Bernstein polynomials, so that using
them has a chance of not being a practical restriction.

These polynomials have a number of useful properties:

Theorem. If y has length n + 1 then

(a) By(0) = y0;

(b) By(1) = yn;

(c) B′
y(x) = nB∆y(x),

where ∆y is the array of differences yi+1 − yi.

The first two are elementary, and the last is only a mildly complicated calculation.

As a consequence:

• B′

y(0) = n(y1 − y0);

• B′
y(1) = n(yn − yn−1).

Thus the graph of By(x) starts at (0, y0) and heads towards (1/n, y1); ends at (1, yn) and comes from (1 −
1/n, yn−1). Since

(

(1 − x) + x
)n

=
∑

(1 − x)ixn−i

(

n

i

)

= 1

the value of By(x) is a weighted sum of the coefficients yi, and the graph of By between 0 and 1 is contained

in the convex hull of the points (i/n, yi). Putting all these things together, we see that if the coefficients yi are a
non­decreasing sequence and lie in [0, 1] then By(x) will start at 0 ≤ y0 and increase to yn ≤ 1. Furthermore,

Bernstein’s theorem tells us thatwe are not sacrificing any practical generality by restricting ourselves to Bernstein

polynomials.

The figures below display the graphs of some Bernstein polynomials, with the yi and the convex hull also

indicated.

y = [0, 0, 1, 1] y = [0, 0, 0, 1, 1, 1] y = [0.3, 0.5, 0.9, 1]

PiScript manual (7:47 a.m. June 23, 2010) 53

The default shading for convex surfaces in πS is y = [0.3, 0.5, 0.9, 1.0]. It can be changed with

setshading(s,y)

where s is a convex surface, y a shading array. The surface you see will be matte—no shiny billiards here. I
remind you that there is also a version setshading(f,y)with f a face.

In addition to what I have discussed here, there is a module Bernstein distributed withπS that contains a small
number of useful functions related to Bernstein polynomials.

Evaluation of Bernstein polynomials. Evaluating the polynomial By(t) is not vastly different from evaluating an
arbitrary polynomial value

P (t) = p0 + p1t + · · · + pntn .

The preferred method is not to evaluate the powers tk and then add, but to evaluate successively by Horner’s
method

pn, pnt + pn−1, (pnt + pn−1)t + pn−2, . . .

One modification required for Bernstein polynomials is that we deal with powers of both t and 1− t. Another is
that we are given the yi, not the coefficients of the polynomial, which we must compute on the fly. Recalling that

(

n

k + 1

)

=
n − k

k + 1

(

n

k

)

we come up with:

def bernstein(y, t):

n = len(y)-1

t = float(t) # to eliminate Python’s problem with integer division

s = 1-t

p = 0

k = 0

c = 1

for a in y:

p = p*s + c*a

c = c*(n-k)*t/(k+1)

k = k+1

return(p)

The file Bernstein.py also contains functions

delta(y)

sigma(y)

subdivide(y)

subdivide(y, n)

In each of the first two, y = (yi) is an array of real numbers. If n+1 is the length of y, they return arrays of length
n − 1 and n + 1:

(∆y)i = yi+1 − yi

(Σy)i = y0 + · · · + yi−1 .

In the last, y is an array of 4 2D points yi. It therefore corresponds to a cubic Bézier curve. It returns an array of

the 2n arrays of control points obtained by recursively bisecting this curve into smaller Bézier cubic curves. This

is useful when mapping paths by highly non­linear transformations. Here n = 1 if not specified.

PiScript manual (7:47 a.m. June 23, 2010) 54

26. How to deal with several objects

So far, what we have seen how to do in 3D is draw a single convex object. But drawing non­convex objects or

even several convex objects is much more difficult, and in fact the techniques currently available in πS are not
well adapted to this task. The problem is that one object can hide another, or at least part of another. What this

amounts to is that the object that is hidden must be drawn first. The professional 3D programs accomplish this

by maintaining 3D graphics data in a z­buffer. Without it, drawing really complicated 3D objects and dealing
with effects like transparency are hard, even nearly impossible.

Still, something can be done. Let’s start with a simple example, that of two cubes in space, originally each of side
1, originally centred at (0, 0,±1), but then rotated. Assume the eye to be out along the positive z­axis. We can

tell very easily which is in back, which in front: the plane z = 0 separates the two cubes, as does this plane after

it is rotated along with the cubes. The cube that’s in back is the one on the side of the rotated z = 0 plane away
from the eye. Equivalently, it is the one whose original position is on the side of z = 0 opposite to what I have

called the virtual eye.

eye pi
nk

bl
ue

So the important code that draws the cubes in the proper order is

e = geteye() # e = the virtual eye

if e[2] > 0:

i.e. if the virtual eye is on the positive side of the xy-plane

paint(blue)

paint(pink)

else:

paint(pink)

paint(blue)

and as we rotate we see (after some decoration):

This is the simplest example of a binary space partition .

Let’s look at a slightly more typical example. We start with a collection of a finite number of points at which we

intend to place cubes:

PiScript manual (7:47 a.m. June 23, 2010) 55

We then divide the points in two parts by means of a single straight line:

Next, we divide one of the two parts into two halves:

And so on:

The structure implicit here is a tree:

y − x − 2 > 0?

y + x + 2 > 0? y − x > 0?

x − 2 > 0?(−3, 3)(−4, 0)

(4,−4) (0,−1)

(0, 1)

PiScript manual (7:47 a.m. June 23, 2010) 56

The line y − x− 2 = 0 divides the plane into two halves, and then successive equations divide those halves, and

so on, except that when just one point lies in a region we stop. In order to draw the assembly we get, we traverse
the tree, checking at each equation node which half to draw first by checking whether the equation of a node is

positive or not on the virtual eye. We get in this way a partition of the plane, but in 3D all of space, and each node

is binary.

This idea works easily if we are given a collection of points and want to partition space into convex regions with

each one containing one point from the collection, but for drawing more complicated collections of objects it fails.
In some cases, as in the following example, there is no strictly back­to­front way to draw things, and one must

chop up the objects first. I’ll say no more about that here.

The technique suggested for a collection of points is limited, but it does allow some interesting graphical con­
structions. The most interesting of all is probably that of graphs of function z = f(x, y). In the obvious version,

this is restricted to the graph surface over rectangles, but in many cases other regions can be considered as well.

First I’ll make somewhat more explicit a method for partitioning a real vector space in the presence of a finite

collection of points. We first sort the points lexicographically: x = (xi) < y = (yi) if the first coordinate in

which x and y differ is less for x than it is for y. Thus x = (1,−1, 1) < y = (1,−1, 2) because x1 = y1, x2 = y2,
but x3 < y3. We then partition space according to the first coordinates. In the example from the images shown

previously we first divide the plane into the regions x1 + 3.5 < 0, x + 3.5 > 0.

We continue in this way, breaking off successively regions where points all have the same value of x1:

If a piece has more than one point in it, we partition it further, according to the sorted values of x2:

PiScript manual (7:47 a.m. June 23, 2010) 57

and continue on to examine all coordinates necessary to distinguish the points. Again we get a tree structure, one

for which the equation nodes are coordinate equalities.

This can be used in a straightforward way to display lattice points:

But it can do something else.

PiScript manual (7:47 a.m. June 23, 2010) 58

The graph of the function z = f(x, y) over a rectangle can be drawn if we first divide the rectangle into small

rectangles, then divide each of the rectangles into two triangles, and plot the corresponding faces of the graph
surface. But the graph will not necessarily be convex, and we must draw it back to front. Its structure is rather

simple for this purpose. It can be drawn effectively in any position by applying the technique described above to

construct a binary partition of space corresponding to the cylinders over the small rectangles in the xy plane.

PiScript manual (7:47 a.m. June 23, 2010) 59

Part 6. Miscellaneous

Stuff that didn’t seem to fit elsewhere.

27. Vectors

Themodule piscript.PiModule containsa Python class Vector,which is also available separately in themodule
piscript.Vectors. These files define a Python class Vector, and also a number of simple geometric operations

and functions that are very useful for drawing. It is algebraic notation that makes Vectors convenient.

Here is some sample usage:

from piscript.PiModule import *

u = Vector(0, 1)

v = Vector([2,-1])

w = u + v

print w

The operations available on Vectors are:

u + v vector addition
u - v vector subtraction

u[i] the i­th coordinate

-v the negative of v
u*c scalar multiplication by c
u*v dot product with v
u/c scalar division by c
u[i] the i­th coordinate

u.x(v) the cross product (of 3D Vectors)
u.length() the Euclidean length

abs(u) also the Euclidean length

u.normalized returns u scaled to length 1
len(u) the length as an array—its dimension

u.arg() the angular coordinate the 2D vector u, in radians
u.rotate() replaces the coordinates of u by those of its rotation through a (in radians)

u.rotated() returns a new rotated vector

u.linethrough(v) returns [A, B, C] defining the line through itself and v
u.interpolated(v, t) returns the interpolation (1 − t)u + tv

In those operations with two arguments (such as u + v), the first operand u must be a Vector, but the second
operand v can be just a numerical array. When str or print is called on a Vector, you will see the proper format,

such as [1, 2]. As mentioned in the command descriptions, it is allowable to use Vectors as arguments in

almost all (all?) methods whenever coordinate arrays are intended.

The module vectors contains a similar set of commands with an extra initial argument u to replace the Vector

in these. but whereas the methods in the Vector class return Vectors, those in vectors take arrays as arguments
and return arrays. Thus:

import piscript.vectors as V

a = [1,2]

b = [2,3]

c = V.sum(a, b)

d = V.diff(a, b)

PiScript manual (7:47 a.m. June 23, 2010) 60

e = V.minus(a)

x = V.mul(a, b)

f = V.mul(a, 2)

There are also similarly related modules Matrices and matrices. The first defines a class Matrix with initial­
izer a double array. The rows of the Matrix are vectors. The useful operations are multiplication A*B, (Ma-

trix).transform(v), and (Matrix).transpose().

28. Addressing PostScript directly

There are a number of operations that interact more directlywith the PostScript file. These include at the moment
the only way to import images, such as photographs.

importPS(f)

importEPS(f)

Loads the PostScript file f into the output file. The difference between the two is that the second encapsulates

the loaded file from its environment. The other does no encapsulation, and is largely intended for loading fonts,

where you want the imported file to affect the environment.

You can import images, for example photographs, in your figures, but youwill have to convert them to PostScript

images first, say with the commonly available program GIMP. Then you would use importEPS.

gsave()

translate(-2.5,-3)

scale(0.18)

importEPS("koala.eps")

grestore()

setfont("Helvetica-Bold", 8)

moveto(3.5,90)

setcolor(0.8,0,0)

show("KOALA")

KOALA

If your PostScript viewer seems to choke on imported .eps files, particularly ones made from photographs, try

turning on the option that pays no attention to end of file markers. In gv, for example, this is the gv option
“Ignore EOF”. It is accessed by opening the menu State/gv Options ...

In the future, πS will be able to do operations on the images you import.

eol()

Adds a blank line to the output PostScript file. Useful for making that file readable by humans, in case—just in

the very unlikely, gosh! almost impossible, event—that something really goes wrong.

putPS(s)

Adds an arbitrary string to the PostScript output file. This is a last resort, allowing you to do fine work in

PostScript if necessary. The good news is that this feature really doesn’t exclude any thing. The bad news is

that you have to know PostScript fairly well in order to use this feature. So this operation is here only for the
cognoscenti (or rather, since I am in Berlin as I write this, for the Feinschmeckern).

comment(s)

Adds a string as PostScript comment. Again, makes the output more readable for humans, which is sometimes
helpful in seeing what goes wrong. But reading PostScript files also means you have to know how to program in

PostScript.

PiScript manual (7:47 a.m. June 23, 2010) 61

29. Differences from PostScript

Many of the commands have names almost the same as the ones they call in PostScript, but sometimes the

behaviour is different. One major reason for doing this in πS is to make it easy to maintain gsave/grestore

pairings. Sometimes it is just convenience. For example, the fill command has an option in which the fill color

is specified in the command. The advantage of this is that here the color change is undone automatically after the

fill whereas in PostScript it is not. Also, it is very common in mathematical work to both fill the inside of a region
and then afterwards draw its boundary. In PostScript this is done awkwardly with a gsave/grestorepair, since

in most PostScript graphics it is less common to both fill and stroke a path. The necessary gsave/grestore

commands are built into the πS fill and stroke commands, thus getting a mild gain in convenience at a small

cost in efficiency.

Other differences: (a) Angles in PostScript are in degrees, in πS either radians or degrees. (b) In PostScript the
commands fill and stroke have an indeterminate effect on the current path in PostScript, maybe destroying

it or maybe not. In πS they do not destroy it. This makes it especially important to start paths with newpath().
(c) In PostScript line widths are scaled when the coordinate system is. But in πS the line width is maintained at

constant 1/72′′ unless it is scaled with scalelinewidth or setlinewidth. In other words, πS thinks of a line as

a mathematical line, having thickness only to make it visible.

30. General comments

The disadvantages of πS include above all verbose input and output. The verbose input is something one gets
quickly used to, and it goes hand­in­hand with cut­and­paste programming, since one can often just copy large

chunks of code from one part of a program to another. The verbose output is mildly annoying. The major cause

of this is that loops are unrolled in the output, instead of being part of loops in PostScript itself.

It may seem that there are a huge number of commands in πS. In my experience it doesn’t take long to produce

simple diagrams quickly, and as for the rest, they grow on you. One thing to keep in mind is that you can define
your own commands to make repetitive tasks easier. You can even modify the basic code ofπS, but I ask that you

not do that—these things have a tendency to spread like Asian flu, and could cause a lot of confusion sooner or

later. So if you do want to modify my code, rename it!

The advantages of πS are these: (a) the PostScript output runs fast and is quickly rendered into .pdf (this last is

probably true because programs that convert PostScript to .pdf are also largely concerned with unrolling loops,
and in the output pf πS there are, as I have just pointed out, no loops); (b) the user has virtually complete control

over the graphics (this is not unrelated to verbosity, is it?); (c) TEX inserts are painless; (d) programming in Python

is pure pleasure (and in particular, for PostScript programmers like me, the error handling is marvelous). I have
worked hard to make actual errors in PostScript very unlikely. If not impossible. But if they do occur you will

get a shock from your PostScript viewer—error messages will be terrifying. Refer to Chapter 1 of Mathematical
Illustrations for some advice on how to keep your sanity.

I want to repeat something I mentioned briefly earlier. When working in an operating system that supports the

make utility, usingπS to generate .eps files can be remarkably convenient. You can configure make to understand
the dependency of .eps files on .py files. This requires that the output .eps file have the same prefix as the .py

files, which has be taken into account in the initialization in the .py file. Then, any changes in .py file will be
automatically transferred to the corresponding .eps files if you type make in the appropriate directory.

Another problemwithπS is one frequently raised, the compatibility of fonts in figures with that in enclosing text.
This compatibility is one of the principal virtues of the packages that do figures from within TEX. It is certainly

possible now that πS can handle virtually any TEX environment. I myself see no advantage to this compatibility,

and for many reasons prefer fonts in figures to be definitely distinct from the fonts used for the same symbols
in the main text. More specifically, I think that in text characters are designed to fit well together in one mass,

whereas in figures the text stands isolated, and ought to be of heavier weight. I am well aware that emotions can

run high over this matter.

PiScript manual (7:47 a.m. June 23, 2010) 62

Is it worthwhile for me to improve the 3D package? The most important thing missing are techniques to deal

with collections of several objects, which have to be drawn from back to front, and in some cases prepared for
that by chopping objects up. There are many great 3D tools around, but most of them are far heavier than most

mathematical exposition calls for.

PiScript manual (7:47 a.m. June 23, 2010) 63

Part 7. Coordinate systems

In order to useπS efficiently it is important to understand coordinate systems. This is standard fare inmathematics

courses, but what is interesting about the way they are dealt with in both PostScript and πS is that internally they
work with an extra dimension. Understanding how and why this is done is not required at any point in using
πS, but it might be useful if you want to develop your own graphics programs.

31. Coordinates in 2D

Making a figure with πS involves writing down a lot of instructions involving coordinates. But in order to see

what your program actually produces, these instructions and numbers must be transformed at some point into
instructions to a piece of hardware, for example either your computer display or through your printer onto paper.

Some kind of translation process is involved. Here is a πS program that draws two lines through the origin at the

centre of the window, and then puts a small circle at the origin:

center()

scalelinewidth(0.75)

newpath()

moveto(-100,-100)

lineto(100, 100)

moveto(0,-100)

lineto(0, 100)

stroke()

newpath()

circle(2)

fill(1)

stroke(0,0,0)

and here is what a very close look at the center of my display window looks like:

PiScript manual (7:47 a.m. June 23, 2010) 64

Many interesting things are visible here. First of all, each little
is one pixel—that is to say one minimal unit in the image. Up close

the separate RGB parts are visible, but from a distance, sure enough,

they merge to form something close to white. Most interesting is
probably the effect of what is called anti­aliasing, by which sharp

breaks in shade are rendered as gradients in order to give the illusion
of smoothness to an otherwise ‘jaggy’ line. In other words, the image

is smeared out a bit.

The point at the moment is that there is a translation involved, from the coordinate system in which I am
programming to the coordinate system the hardware uses. Now almost all graphics hardware these days renders

graphics in terms of pixels—very small regions of your screen that represent essentially one minimal display
unit. The basic unit of length on such a display is naturally the width of one pixel. In addition to choosing this

dimension, other choices must be made—what directions for x and y axes, and the location of the origin. On my

display window, which simulates an 8 1/2"×11" page, for example, the origin is at the upper left of the window,
x increases to the right, and y increases as you go down the screen. In addition, there are about 75 pixels to one

nominal linear inch, which means that each point is about 75/72 ∼ 1.04 pixels. Recalling that the origin in my

program is at lower left when I start, one deduces that the point which is (x, y) in my program maps to the point
which is (xpixel, ypixel) in the window, where

xpixel = 1.041667x

ypixel = −1.041667y + 825

For example, (0, 0) maps to (0, 825) and since 825 = 11 · 75, this is indeed at lower left.

32. Affine transformations

The coordinate systems used inmost graphics programs are affine . (I do not know the derivation of this term. My

dictionary tells me that ‘affine’ is an English word coming from the Latin word ‘affinis’, which means ‘related’.

So much for that.) Each coordinates system is determined by a coordinate frame, which amounts to a choice of
origin as well as two vectors equal to the unit displacements along the x, y axes. The relationship between two

affine coordinate systems is specified by an affine transformation . Geometrically, this means that every straight
line in one is transformed to a straight line in the other. Algebraically, it means that the new coordinates (x, y)
and the old ones (x∗, y∗) are related by equations

x∗ = ax + cy + e

y∗ = bx + dy + f .

An affine transformation is stored internally in both PostScript and πS as a single array [a, b, c, d, e, f]. The

individual coefficients in this expression can be geometrically interpreted. (a) If (x, y) = (0, 0) then (x∗, y∗) =
(e, f). So (e, f) is the point the origin gets mapped to. (b) The point (1, 0) is transformed to (a+e, b+f), so (a, b)
is what the vector from (0, 0) to (1, 0) is transformed to—each shift in (x, y) by [1, 0] gives rise to a shift in (x∗, y∗)
by [a, b]. (c) Similarly, [c, d] is what the relative displacement [0, 1] corresponds to. (I am making a distinction

between points (x, y), which are characterized by location, and vectors [dx, dy], which are characterized by

relative displacement. Given a coordinate system, the two are confounded because location can be seen as a
displacement from the origin.)

PiScript manual (7:47 a.m. June 23, 2010) 65

[a
, b

]

[c
,
d
]

(e, f)

Here,we’ll be concernedwith different coordinate systems on the same plane rather than on different ones. That’s
because using coordinate changes effectively is a crucial technique in making πS useful.

Each coordinate system is completely determined by a single unit frame F embedded into the plane, which is
a parallelogram with one corner and two adjacent edges labelled. If we are given a coordinate system, a frame

F is equivalent to a point specified by its coordinates, together with two vectors [a, b] and [c, d] determining the

edges. But now choose the new coordinate system whose unit frame is F . The relationship between a point’s old
coordinates and its new ones is

xold = axnew + cynew + e

yold = bxnew + dynew + f .

For example, the new origin is (e, f) in the old coordinate system.

33. The mathematics of coordinate changes

WhenπS starts up, the coordinate system is the default. The origin is at lower left of the page, and the coordinate

frame is a square, 1/72′′ on a side. As a πS program proceeds, the coordinate system changes, and πS itself keeps
track of the matrix transforming one set of coordinates to another. This matrix is part of the graphics state. When
we change coordinates, how does the current transformation matrix change? The most elegant answer to this
question involves an interesting move from 2D into 3D.

The equation relating coordinates can be put into matrix form:

[

xold

yold

]

=

[

a c
b d

] [

xnew

ynew

]

+

[

e
f

]

.

The shift by (e, f) gets treated differently from the other parts of the transformation. But we can rewrite this
equation in an interesting way—suppose we embed the 2D plane in 3D by mapping (x, y) to (x, y, 1). In other

words, we shift the plane z = 0 to z = 1. Then the above equation can be rewritten





xold

yold

1



 =





a c e
b d f
0 0 1









xnew

ynew

1



 = A





xnew

ynew

1



 .

The coordinate transformation is implemented now by a familiar matrix multiplication. This trick makes the
combination of several coordinate changes easy to keep track of. If we also have





xdefault

ydefault

1



 = T





xold

yold

1





PiScript manual (7:47 a.m. June 23, 2010) 66

then




xdefault

ydefault

1



 = T





xold

yold

1



 = TA





xnew

ynew

1



 .

So the new current transformation matrix is the matrix product TA.

34. Points and vectors (again)

The translation from 2D to 3D helps make the difference between points and vectors more visible.

I recall: a point is a position, a vector is a relative position. In other words, a vector measures the difference in
position of two points. A vector has no intrinsic location—in the following figure, the two arrows represent the

same vector.

Both positions and vectors intrinsic meaning, but given a coordinate system they’ll also correspond to arrays
of numbers. But the two notions, intrinsic meaning and coordinate expressions are not to be confused. As a

very close analogy, the speed of an automobile is an intrinsic thing, but its specification as km/hour or mi/hour

depends on a choice of scale—in effect a coordinate system.

In writing, I try to distinguish points (x, y) from vectors [x, y], but this is not always feasible since programming

languages see both as just an array of two numbers. This confusion has a meaning—the numbers have meaning
only if a coordinate system has been chosen, and this means in particular an origin. Given an origin, every

point is associated to the vector representing displacement from that origin. And conversely, every vector is

associated to the point you get by displacing the origin. But unless the choice of origin has real significance, this
correspondence has no real significance—if we change the origin, points get attached to different vectors.

The operations strictly allowed on points and vectors are quite different, although of course when they are both
treated as arrays the distinction fails in practice. On points there are very few operations: basically, all we can do

is shift a point by a vector, and we can take the difference of two points to get a vector. But it does not make sense
to add two points. As for vectors, we can add them or scale them.

We can take the dot product of two vectors, but this isn’t intrinsic—it depends on the units of length we have

chosen, and how we calculate it depends on the coordinate system at hand.

There are other objects of geometrical significance—lines and functions. They also are assigned coordinates if a

coordinate system is chosen. The functions we’ll consider here are linear

f(x, y) = ax + by

and affine

f(x, y) = ax + by + c .

The way to distinguish these is that a linear function may be intrinsically applied to vectors, and an affine one to
points. There is a relation between the two—to an affine function ax + by + c is associated its gradient function

∇f(x, y) = ax + by which satisfies
f(P + V) = f(P) + ∇f(V)

for any point P , vector V . Given a coordinate system, points and vectors are confused, since linear functionsmay

be identified with affine functions vanishing at the origin.

PiScript manual (7:47 a.m. June 23, 2010) 67

One curious feature is that if we shift 2D points into 3D, the evaluation of an affine function at points becomes

the evaluation of a linear function:

a · x + b · y + c = [a, b, c]• [x, y, 1] .

This is useful in obtaining an answer to the question,Howdoes a linear coordinate change affect a linear function?

For example, suppose we change coordinates xnew = 2xold, ynew = 3yold. The point that is (1, 1) in the
original system becomes (2, 3) in the new one. Suppose we now consider the line whose equation was originally

xold + yold = 1. What is its in the new coordinates? Another way to pose this is to think, we have a fixed linear
function, that is to say an assignment of a number to every point in the plane. In the old coordinate system its

expression is xold + yold. What is its expression in the new one? The function doesn’t change its value at a point,

however, so its expression in the new system is xnew/2 + ynew/3.

You should think of a linear function as an intrinsic object that assigns numbers to vectors, and an affine function as

one that assigns numbers to points. Both are very specila types of functions, with certain properties characterized
as linear. But the formula for that function depends on a choice of coordinate system. How do we calculate the

way this function changes when we change the coordinate system?

A linear function may be expressed as a matrix product, if we express the coefficients of the function as a row
vector:

ax + by = [a b]

[

x
y

]

.

Suppose we make a linear coordinate change

[

xold

yold

]

=

[

a c
b d

] [

xnew

ynew

]

= A

[

xnew

ynew

]

.

Let f be the function expressed in terms of coordinates (aold, bold) in the original system. We have

aoldxold + boldyold = [aold bold]

[

xold

yold

]

= [aold bold]A

[

xnew

ynew

]

= [anew bnew]

[

xnew

ynew

]

if we set
[anew bnew] = [aold bold] A .

The same thing happens with affine functions.

Theorem. If




xold

yold

1



 =





a c e
b d f
0 0 1









xnew

ynew

1



 = A





xnew

ynew

1





then the equation in new coordinates of the line aoldxold + boldyold + cold = 0 are obtained from

[anew bnew cnew] = [aold bold cold] A .

If we identify 2D points with 3D ones, an interesting thing happens: the difference us

(x1, y1, 1) − (x2, y2, 1) = (x1 − x2, y1 − y2, 0) .

This suggests identifying 2D vectors with 3D points whose last coordinate is 0.

PiScript manual (7:47 a.m. June 23, 2010) 68

35. Homogeneous coordinates

An affine function ax + by + c determines the line ax + by + c = 0. But what exactly are the coordinates of the

line? Not (a, b, c), which can reasonably be considered the coordinates of the function, because if we multiply
the equation through by a non­zero scalar, say 2 or −1, we get the same line. So we take the coordinates of the

line to be (a, b, c) but with the proviso that (ya, yb, yc) is in some sense the same set of coordinates. These are

called homogeneous coordinates —determined only up to non­scalar multiplication. This idea can be refined
slightly—restrict the scalar multiplication to positive scalars. Thus (a, b, c) is not the same as (−a,−b,−c). This
also has some intrinsic meaning, because it allows us to distinguish sides of the line: ax + by + c > 0 and

ax + by + c < 0. We can call a line together with a choice of sides an oriented line .

It also makes some sense to consider homogeneous coordinates for vectors, too: let the vector [a, b] in 2D

correspond to the 3D vector [a, b, 0], and if we allow multiplication by a positive scalar we still preserve the
direction of the vector. Two directions [a, b] and [a∗, b∗] are the same when one is obtained from the other by a

positive scalar multiplication.

What about for points? It turns out that, even with points, using homogeneous coordinates makes sense.

Earlier, we have mapped the 3D point (x, y, z) to the 4D point (x, y, z, 1). But now I extend this, andmap it to the
whole collection of 4D points (cx, cy, cz, c) for c > 0—in other words, we are assigning it oriented homogeneous

coordinates. Why do that? It turns out that when perspective, lighting, and visibility all have to be taken into

account, as they do in 3D drawing, it is a very natural and efficient thing to do.

I am going to give just one application of this construction to a problem that arises frequently in 3D graphics.

Fix a point P and a plane f(x, y, z) = Ax + By + Cz + D = 0. For each point Q 6= P , there exists a
unique line through P and Q, and if it is not parallel to the plane it will intersect the plane at a unique
point R. What is R?

In effect, the point R is the projection of Q onto the plane from the point P .

The problem is basically simple. The line from P through Q can be parametrized P + t(Q − P), so we want to
find t such that

f
(

P + t(Q − P)
)

= 0

If∇f = [A, B, C] so that f(P) = 〈∇f, P 〉 + D, this leads to

f(P) + t〈∇f, (Q − P)〉 = 0

t = − f(P)

〈∇f, (Q − P)〉

R = P − f(P)

〈∇f, (Q − P)〉 (Q − P)

This last equation still holds if we push P , Q, R into 4D with last coordinate 1, since the last coordinate of Q− P
is then 0. Even better, we interpret the coefficients for the plane as a 4D point (A, B, C, D). This seems rather

natural, since
f(P) = Ax + By + Cz + D = (A, B, C, D)• (x, y, z, 1) .

The equation for R becomes now

R = P − f(P)

〈f, (Q − P)〉 (Q − P) .

and if we take into account that multiplying homogeneous coordinates by non­zero scalar is allowable, we get:

Theorem. Fix a point P and a plane f(x, y, z) = Ax + By + Cz + D = 0. For each point Q 6= P , there exists a
unique line through P and Q, and if it is not parallel to the plane it will intersect the plane at a unique point R.
The homogeneous coordinates of R are equal to

〈f, (Q − P)〉P − f(P)(Q − P) = f(Q)P − f(P)Q .

PiScript manual (7:47 a.m. June 23, 2010) 69

To bring R back to 3D it is necessary to divide through by the 4­th coordinate to make it 1. This coordinate is

〈f, (Q − P)〉. It will be 0 precisely when f(P) = f(Q), which means that Q − P is parallel to the plane f = 0
and the projection is undefined anyway. Actually, even in this case the formula makes some sense, if we recall
that 4D vectors with last coordinate 0 may be interpreted as directions.

There is a second version of this problem which is also handled nicely by the formula. Suppose we take P to

be very far away. This means that r = ‖P‖ =
√

x2 + y2 + z2 is very large. Using homogeneous coordinates,

P = (x, y, z, 1), and this is equivalent to (x/r, y/r, z/r, 1/r). As r → ∞, this has a limit with last coordinate 0.
This suggests the idea that more generally points at infinity in 3D are equivalent to 4D points with last coordinate
0, which will be useful to keep in mind. The original problem still makes sense for such infinite points—in that
case we are looking at projection onto the plane from a certain direction indicated by the coordinates of P . The

really nice thing is that the formula above for projection remains valid for points at ∞.

In order to really appreciate this formula, and to see what interesting use it can be put to, it is necessary to
understand how πS implements 3D coordinate changes. First of all it maintains a 3D graphics stack on which the

3Dgraphics state is held. This includesmostly amatrixT that tells how to transform the current user coordinates—
the ones that go as arguments to commands such as moveto3d(x,y,z)—to the default 3D coordinates it starts

with. It also stores some information about how then to transform points in default coordinates into a point in

2D to be plotted and seen.

Internally,πS works with homogeneous coordinates. The matrix T is therefore 4×4, and thematrix that specifies

how to go from 3D to 2D is 4× 3. The way the transform works is that v = (x, y, z, 1) is mapped to Tv in default
coordinates. Every coordinate change corresponds to a 4 × 4 matrix A, and its effect is to change T to TA. For

example, a translation by (a, b, c) means

(xold, yold, zold) = (xnew + a, ynew + b, znew + c) ,

which can be written






xold

yold

zold

1






=







1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1













xnew

ynew

znew

1






,

so for a translation by (a, b, c)

A =







1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1






.

Rotations and scale changes are similar.

Now one surprising thing. Suppose wewant to draw shadows of an object in 3D, shadows onto some plane from

a light source at the point P . This can be effected also by a kind of coordinate change! As we carry out commands
like moveto3d(Q) we really want to move to the projection of Q onto the plane of shadows. But the formula

taking Q to f(Q)P − f(Q)P depends linearly on Q, and can be expressed by a matrix. If P = (xP , yP , zP , 1)
and Q = (xQ, yQ, zQ, 1) then the projection is

R = f(Q)P − f(P)Q = (AxQ + ByQ + CzQ + D)(xP , yP , zP , 1) − f(P)(xQ, yQ, zQ, 1) .

The matrix associated to this has as its columns the transforms of the basis vectors Q = (1, 0, 0, 0) etc. and it is

here






AxP − f(P) BxP CxP DxP

AyP ByP − f(P) CyP DyP

AzP BzP CzP − f(P) DzP

A B C D − f(P)






.

Thus we are led to introduce a command

PiScript manual (7:47 a.m. June 23, 2010) 70

project(f, P)

Here f = [A, B, C, D] and P = (x, y, z, w) with w = 1 for points and 0 for parallel projections. This effects

shadowdrawing by a coordinate change. It differs fromother coordinate commands in one importantway—when

coordinate changes are made, the inverse of the matrix T is also calculated—T−1 7→ A−1T−1. But projection is
not invertible, and this calculation cannot be done. What this means in practice is that you cannot make more

coordinate changes on top of a projection. Be sure to encapsulate project by gsave/grestore.

PiScript manual (7:47 a.m. June 23, 2010) 71

Part 8. Advice on illustrating mathematics

WithπS you have at hand a tool for producing goodmathematical pictures of a very high quality. It is not trivial to

use well, but then producing useful mathematical figures is not a trivial task. I’d guess that πS is about as simple
as it can be. But understanding the technical aspects of πS is just the beginning. The hardest part of producing

good mathematical figures is the intellectual challenge involved, just as writing a good mathematical paper is

much more than just being able to write words on a page (or key in letters on a compute). It requires imagination
and care.

I offer here ten rules that I generally try to follow.

1. Reduce visual clutter and—what is not quite the same thing—eliminate distraction. Put in only what the

diagram really needs to make its point. Tone down components that just add context. One eccentric idea is
that, in my view, vertex labels are always clutter. In the year 300 B.C. they might have been a useful and novel

innovation, but in the modern world there are more useful tricks to try.

2. Highlight components that are central to the current discussion. If necessary, repeat a diagram several times,

but with different components emphasized. This is a variant of what Tufte calls small multiples.

3. The figures themselves should tell a story. Coordination between text and illustration is surprisingly tricky,
and ideally the two should be as independent of each other as possible. Movies handle this problem with audio,

but that’s not an easy option yet for mathematics, nor is it easy to think about how to deal with it even if it were.
Most of us are still restricted to making silent films. One thing to be aware of is that mathematics writing often

has two conflicting goals—one is to explain the basic idea(s) behind a proof, and the other is to give details of a

rigourous proof. Pictures can be invaluable in the first role.

4. A reader should not be compelled to shift attention constantly back and forth between text and figure.
Traditionally, vertex labels are used to coordinate text and figures, but what this means is precisely constant eye­
shifting, trying to piece together different components of a diagram in order to follow reasoning. Bad psychology.

Much better usually is a series of figures highlighting the component under consideration. Also, πS makes this

easier since inserting TEX, hence verbal cues, into figures is relatively simple.

5. In drawing figures, think out how the material would be presented in spoken discourse. Draw pictures that

follow the same narrative, even if this means a fair amount of repetition. Computers can help in dealing with
this sort of repetition.

6. Ask constantly if the figures really do convey the point they are meant to. Redo them if necessary. Figures
should be redrawn, as text is rewritten, until they are right.

7. Experiment. Sometimes very small and subtle changes in a figure will have an enormous impact. Use
imagination.

8. Don’t attempt to say too much explicitly. Good figures can be more suggestive than text. It is occasionally
useful even to make them puzzling.

9. Keep in mind that people’s interpretations of pictures vary unpredictably, as thousands of psychological

experiments show. Don’t often depend entirely on pictures to make your point.

10. It is very rare for there to be toomany illustrations in amathematics paper. Keep inmind that illustrations can

serve a number of distinct purposes—for example, I find that I can often tell better what a paper with plentiful
illustrations is about by skimming diagrams rather than by reading text. I am pretty sure this is a common

experience. Pictures can often be read rapidly, and adding more should always be taken as a option to be taken
seriously. Also, although I myself sin badly in this respect, good captions are important.

PiScript manual (7:47 a.m. June 23, 2010) 72

Appendix 1. Setting up

In order to use πS you must have several programs installed on your computer:

• the programming language Python
• TEX

• a PostScript viewer

• a plain text editor
• the program πS itself

• PostScript versions of TEX fonts

In the original version of πS, the PostScript versions of TEX fonts were distributed along with πS itself. The new

version, at least for Linux systems, uses the tools that come with the standard TEX distribution, if it has been
installed.

On most Linux systems all the necessary auxiliary programs and files are installed by default, so the only

installation you’ll have to make is of πS itself. I’ll start here by assuming that all but πS is installed on your
machine, and tell you later about auxiliary programs required.

36. Installing πS under UNIX and its cousins

The home page for πS is

http://www.math.ubc.ca/~cass/piscript/docs/

The complete collection of Python modules you need, together with documentation and a directory full of

examples, is in the file

http://www.math.ubc.ca/~cass/piscript/piscript-<version>.tar.gz

Unpack it in whatever you choose for your base directory. This will create and fill a directory piscript-

<version> (which I’ll refer to as <base>) with subdirectories piscript, examples, docs, configs.

The first contains the package of Python files, as well as a few programs written in C, that implement πS; the
second contains a large collection of examples of πS programs and the .eps files they produce; the third contains

this manual. The directory configs contains some sample TexConfig files. You should move these some place

convenient. For example, on my machine I have moved piscript to be a subdirectory of lib/python in my
home directory. (More precisely, I made a soft link with ln -s <base>/piscript piscript in lib/python.)

In this document, I’ll refer to this directory as <piscript>.

Now you must

(1) Register the directory <piscript> as part of your PYTHONPATH in your shell .

(2) Choose (or create) a directory somewhere in your personal home directory to be your LOCALPISCRIPTDIR,

and register that also. I’ll explain in a moment what it’s for.

How to do (1) depends onwhat shell programyou are using (usually bashor tcsh in Linux). What youwant to do

is set the environment variable PYTHONPATH to the directory <base> containing piscript—$HOME/lib/python/,
for example.

As for (2), what I have done is to create a ‘hidden’ directory .piscript in my home directory as well as a

subdirectory configs in that, and then set LOCALPISCRIPTDIR to $HOME/.piscript. I also make an empty
file __init__.py in configs, which makes it a possible home for a Python package. This directory will hold

Python programs accessible to your own Python programs, nomatter where they happen to be. The subdirectory
LOCALPISCRIPTDIR/configswill be one searched automatically by πS to locate TEX configuration files.

PiScript manual (7:47 a.m. June 23, 2010) 73

As an example of how to set environment variables, I myself use the shell program bash, and in the file .bashrc

in my home directory I enter two lines:

export LOCALPISCRIPTDIR=’$HOME/.piscript’

export PYTHONPATH=$HOME/lib/python/:$HOME/.piscript/

Normally, you should now be ready to write πS programs. As time goes on and you want to customize your

environment, you can do so by adding files to directories in your Python path. But if you want to deviate from
the standard setup, read on.

37. Font access under UNIX

In the original distributions, I included a core selection of fonts and font data necessary to run most but not all

TEX files. The current version, thanks to David Maxwell, will handle any TEX your machine will, as long as your

TEX distribution is the standard one obtained from CTAN.

38. TEX environment

You might want to set the global TEX environment in the file TexConfig.py, which ought to be placed in the
<piscript> directory. But if you use LATEX in a standard way, you should be happy with the default. If you

use plain TEX, you should copy <piscript>/PlainTexConfig.py to <piscript>/TexConfig.py. In time, you

will probably want to customize your TEX environment. But this is easy to do later. How to do it is explained in
the main text.

39. Installing under Windows

At the moment, a working version for Windows machines is not available. Real Soon Now.

40. History

For many years, I taught a course in geometry that used PostScript as a drawing tool. But this always involved

a lot of work teaching just the basics of PostScript programming. Shortly after I retired from teaching, William
Stein brought my attention to the programming language Python, and I realized very quickly that it would not

be difficult to construct a Python interface to PostScript that would be much easier both to use and to teach.

The original version was tied very closely to PostScript, but it became clear that this was not necessary. Beginning
in the summer of 2009, with the assistance of David Maxwell, I started converting the basic routines to eliminate

this dependence. The eventual conclusion to this trend was to filter all output through the command arrays I
refer to in the manual. This should have several interesting consequences in the future, among them (1) direct

.pdf output and (2) being able to geometrically transform an arbitrary figure. Other current work in progress is

concerned with creating practical BSP routines for drawing several 3D objects.

About the same time,Maxwell expanded the font­handling capabilities enormously, mostly bymaking it possible

to deal with Don Knuth’s virtual fonts, and by using the CTAN distribution’s tools to locate font files. A number
of other minor but exceedingly pleasant improvements, such as eliminating the need to specify the output file

name in init, are due to him.

Earlier in the Spring of 2009, I started working out the idea of ‘meta­graphics’, but only finally came to place

and embed a year later.

Much of the development of πS is greatly indebted to Günther Ziegler’s renewed invitations to give a graphics

workshop to graduate students at the Berlin Mathematical School for each of four summers 2007–2010.

PiScript manual (7:47 a.m. June 23, 2010) 74

41. Auxiliary programs

I shall discuss here the auxiliary programs you’ll need in order to get things working.

Python

The first requirement for using πS is that your computer have Python installed. I cannot tell you how to achieve
that if it is not already done, but I can tell you that the home page for Python is

http://www.python.org/

I can also tell you that under no circumstances do you want to get Python 3, which is a very different language

from the more relaxed and friendly Python 2.

Depending on the operating system of the machine you are using, running Python on a file varies. The simplest

will work onmost systems—just click on the Pythonfile. In order for this towork, your systemmust be configured
to run Python on .py files. On Windows machines, doing this will have a disconcerting effect ­ a DOS window

will pop up and disappear almost immediately. Not so good for keeping track of your program.

A second method is to run Python on the file in a terminal window:

python x.py

A third is to run the file itself. On a UNIX­like machine, you must have something like #!/usr/bin/python in

the first line of your file, and the file must be executable. Then you can type ./x.py in a terminal window. On a

recent Windows machine, just type x.py in a DOS window.

A fourth is the one I use, which I recommend strongly, and that to use the utility make to manage your figure

files. This deserves a separate and later discussion.

TEX

You must have TEX installed, and you must have access to certain font files. Un UNIX­like machines, TEX is
usually installed by default, and causes no problems. For Windows machines, you must have a version of TEX

that can be run by a terminal command­line like tex or latex. The program MiKTeX at

http://miktex.org/

is available without cost. It worked with earlier versions of πS, and will be the principal target for the present
one.

PostScript viewer

In order to see your PostScript figures, you’ll need a PostScript viewer, such as the combination of GhostScript

and gv. It is GhostScript that does the basic interpretation of PostScript files, but normally you would use a
more convenient viewing program to allow easier interaction with it.

By far the best PostScript viewer is gv, which is now maintained as part of the GNU project. But as far as I can see
it is not available onWindowsmachines, and perhaps a bit tricky to install onMacs. Alternatives are GSView and

GhostView. A useful general source of information, with good links, is

http://en.wikipedia.org/wiki/Ghostscript

More specifically, for the most recent version of gv:

http://www.gnu.org/software/gv/

PiScript manual (7:47 a.m. June 23, 2010) 75

Appendix 2. A (very) brief introduction to Python

Python is an elegant programming language. Although it does not produce programs that execute as rapidly as

those produced by Java or C++, it is very easy to write simple programs quickly, and when it comes to needing
more speed it is not hard to interface to programs written in other languages. It has been around for more than a

dozen years, but seems to have become popular only recently. It deserves its new­found popularity.

My own purpose in learning Python was to design a graphics tool to replace the programming in PostScript that

I have been doing for many years. I believe that I have accomplished this, with what I call the PiScript modules.

But since then I now use Python to write all kinds of simple programs in. For example, although I will not explain
it here, the regular expression package for Python is far more convenient than than the one for PERL, and in fact

I see no reason for anyone at any time from now on to write a program in PERL. Thank Heaven.

There are lots of sites in the Internet where one can find an endless amount of information about Python, so I

am not going to write a full blown text here. What I am hoping is that this note will get you to the point where

you can write simple programs and then be able to look around for information on how to write more advanced
ones. I hope in particular that this will be just enough so that you you read my sample PiScript programs and

then make your own. In learning Python, I myself used the book Learning Python written by Mark Lutz and

published by O’Reilly, but gosh! it is awfully—and painfully—verbose.

Documents available on the Internet include

http://docs.python.org/tut/tut.html (official tutorial)

and a plethora of stuff listed at

http://wiki.python.org/moin/BeginnersGuide/Programmers

42. Starting

I believe in teaching programming by examples. Here is a program that calculates and displays the sum of the

first 100 integers:

#!/usr/bin/python

calculates sum of first 100 integers

s = 0

for i in range(1, 100):

s += i

print "s = " , s

The name of the file it is in is sum.py.

It’s pretty simple. Let’s go through it line by line.

#!/usr/bin/python

This first line is for systems running some flavour of UNIX (such as Linux or MacOS). It is not necessary, but
allows you to set up the file as an executable on these systems by setting its permissions flag to be 755. Otherwise,

the normal way to execute the program is to type python plus the file name on a command line: python sum.py.

It is not necessary that the file have extension .py, but it is a good idea.

calculates sum of first 100 integers

This is a comment. The sign # makes the remainder of the line a comment. Longer multi­line comments can be
enclosed between a matching pair of triple quotation marks """.

PiScript manual (7:47 a.m. June 23, 2010) 76

s = 0

Like most other languages these days, = is variable assignment. One mildly eccentric but lovable feature of

Python is that the types of variables don’t have to be declared. Python knows here that s is an integer variable,

and keeps track of that fact. This dynamic typing might occasionally cause trouble, but not often. Python will
complain about a variable’s type only when it is asked to perform some task with the variable that its type is not

equipped for.

Statements may be ended with a semi­colon or not. Separate statements on a single line must be separated by

semi­colons.

for i in range(1, 100):

This is one of the two common loops in Python. As before, i is not declared, and in fact its type is somewhat
indeterminate in a for loop. The range(1,100) is actually a Python list (basically, a changeable array) of the

integers 1, 2, . . . , 99. You can see this by

print range(10)

It is somewhat inefficient to construct the full range, and you can use a dynamic equivalent xrange. What the

loop does is just run through the array, setting i to be each element it encounters in turn.

s += i

The only really eccentric feature of Python is the way it requires indentation by one or more tab spaces to mark

blocks of code that are marked with { ... } in C or Java. Even comments. Indentation has to agree with

the code environment. The lines that require subsequent indentation end in a colon. These include function
definitions, loop beginnings, and conditionals.

Unlike in C or Java, ++ and -- are not part of the language.

print "s = " , s

The command printworks pretty much in the predictable way. Output is to standard output. Normally print
output is followed by a carriage return, but the comma annuls that. Putting commas in the middle of print

statements just concatenates output with a little extra space but no carriage returns.

It doesn’t show up in this short program, but there one other characteristic feature of Python. Unlike C or C++

but just like Java, you do not have to allocate memory for objects. This is both good and bad news, since clever
memory handling is a major component of fast programs. Still, it is very, very convenient.

43. Data types

The built­in data types of Python are

integers

floating point numbers
Boolean

strings

lists
dictionaries

files
functions

classes

Integers. These are different in Python from what they are in most programming languages, in that they are of

arbitrary size. In other words, whereas in Java or C the maximum ordinary integer is in the range [−231, 231 − 1],

PiScript manual (7:47 a.m. June 23, 2010) 77

in Python the transition from 231 to 231 + 1 is done correctly and silently. There is a cost to this amenability, since

in most machines the CPU handles integers modulo 232, and in some modulo 264. Therefore, as soon as large
integers are encountered in Python they will take up more than one machine word, and dealing with them will

be correspondingly slow.

Integer division gives the integral quotient. Thus 6/5 returns 1. One wonderful feature of Python for a math­

ematician is that integer division returns the true integral quotient. So n/m is always the integer q such that

qm ≤ n < (q + 1)n, and similarly n % m (i. e. n modulo m) always lies in [0, m). So -6/5 is −2 and -6 % 5 is 4.

Floating point numbers. Nothing special, except that there seems to be no equivalent in Python of single precision

floating point numbers (floats in Java). All are double precision. I do not know to what extent Python floating
point numbers depend on themachine at hand, orwhether the compiler takes the IEEE specifications into account.

In displaying these numbers, the default is to reproduce the full double precision expression. This often annoying
behaviour can be modified by using a format string, as in C. Thus

print "%f" % 3.14159265358979

will produce 3.141593. Other options allow more control. See

http://www.webdotdev.com/nvd/articles-reviews/python/numerical-programming-in-python-938-139_3.html

http://kogs-www.informatik.uni-hamburg.de/~meine/python tricks

for more information on formatting of floats. (The second site has a useful table around the middle.)

Because division of integers yields the integer quotient, you must be extremely careful when dividing
variables that might be either integers or floating numbers. In these circumstances, it is safest to convert
either numerator or denominator to a float first, say by multiplying one or the other by 1.0. Or by using the
operator float, which changes x to a float.

Thus float(1) returns 1.0. When you do this, be careful to group terms with parentheses. Thus x = 1.0 ∗ a/b
(probably incorrect, because a/bmight be evaluated first) is not the same as (1.0∗a)/b (probably what youwant).

Strings. To build strings by concatenation of data types other than strings, you must use the str function. Thus

print "x = " + str(x)

But here,

print "x = ", x

will also work or even

print "x = ",

print x

There are functions to turn strings back into other types, too. Thus int("3") returns 3 and float("3.3") returns
3.3. These are useful in parsing command lines (discussed in a later section).

Strings are arrays. You can refer to len(s) or s[i]. The last element is s[-1],a nd you can get a substring as
s[3:6] or s[3:-1].

Booleans. These are True and False. Boolean operations are English words: not, or, and, xor, . . .

Lists. A list is essentially an array. It is different from other types of array in Python that I never use, in that you

can change its entries, and you can enlarge it or shrink it. Any sequence of items can be put into a list—lists can be
arrays of objects of very different types. Lists are normally grown in steps. Thus to get a list a = [0,1,2,3,4,

..., n-1] one writes

a = []

PiScript manual (7:47 a.m. June 23, 2010) 78

for i in range(n):

a.append(i)

but if the list is fixed ahead of time you can just write a = [0,1,2,3,4]. You build a list by appending data to

it, and you can delete entries from it with remove. The most useful deletion method is pop, which removes and
returns the last item in the list. This allows you to simulate stacks in Python very easily.

If you are never going to modify your array, use a tuple (such as (1,2,3)).

Dictionaries. A dictionary is a special kind of list, one of of keys and values. It is the analogue of hash tables in

other languages, but in Python is one of the basic types of data. Here is a sample dictionary:

d= {"red":[1,0,0], "green":[0,1,0], "blue":[0,0,1]}

You access the values for a given key very conveniently: r = d["red"],a nd you can add entries to the
dictionary equally conveniently: d["orange"] = [1,0.5,0]. You can check if a key is in the dictionary: if

d.has_key("red"): ... , and in fact you should do that if you are not sure whether or not a key exists,
because referring to d[k]when d does not have k as a key is an error. You can list all keys: k = d.keys()

Functions. A function is defined like this:

def sum(m, n):

s = 0

for i in range(m, n):

s += i

return s

If you are calling a function with no arguments, be sure to use parentheses, because functions are also objects.

They can be passed as arguments. Thus

def newton(f, x):

for i in range(10):

fx = f(x)

x -= fx[0]/fx[1]

return(x)

def sqr(x):

return([(x*x-2.0), 2.0*x])

print newton(sqr,1)

is OK. (Note how I have made sqr return floating point numbers.) Using functions as variables makes up to

some extent for the lack of a switch or case in Python, which is for some of us a major and mysterious lack. You

can find lots of puzzled complaints about this on the ’Net.

If you want to change the value of a global variable inside a function you must declare it to be global inside the

function. Thus

def set(n):

global a

a = n

not

def set(n):

a = n

Functions return the None object (equivalent of a null pointer in other languages) by default.

PiScript manual (7:47 a.m. June 23, 2010) 79

Files. The basic procedures involved in using files for input and output are very simple.

f = open("output.txt", "w")

f.write("abc\n")

and

f = open("output.txt", "r")

s = f.read()

and

f = open("output.txt", "r")

s = f.readline()

while (s):

s = f.readline()

But there are some things to watch out for. The most important is that when you are through using your file,
you must close it. For one thing, files definitely don’t flush their output until flush() or close() is called. For

another, at least in Windows, you will not be able to do anything else with the file, such as remove it, until it is

closed. Also more important in a Windows environment is that a binary file should be handled with a tag "b", as
in "rb" or "wb", since otherwise Windows interprets some characters, such as EOF, specially.

Classes. As in other object oriented programming languages, you can create new data types. Here is one that
defines a stack object:

class Stack:

def __init__(self):

self.list = []

def push(self, x):

self.list.append(x)

def pop(self):

return self.list.pop()

def toString(s):

return str(s.list)

toString = staticmethod(toString)

--- sample usage -----------

s = Stack()

s.push(0)

print Stack.toString(s)

n = s.pop()

This isn’t a very useful class, since it does nothing more than lists, but if you want to feel at home in Python,

maybe you’ll use it. As you can see from this, Python can be rather selfish. This gets a bit annoying, I have
to say. It is the analogue of this in Java, but whereas it is implicit in Java it is screaming right in your face in

Python. For better or worse. When your program has s.pop(), this translates to Stack.pop(s) in the class—i. e.

the calling instance becomes the first argument. One pleasant feature of classes is that you can overload certain
operators like + and -, but I won’t explain that here.

PiScript manual (7:47 a.m. June 23, 2010) 80

44. Variables

The most fascinating thing about variables in Python is that their types are dynamically determined. You should

think of every thing in the program having a type that gets stuck to it transmitted in assignments. Variable types
can vary. Thus

x = 3

x = "Hi, there!"

is an entirely legal successive pair of lines.

Also, as in Java, memory allocation is handled automatically by garbage collection. This is both good and bad

news, since truly spectacular efficiency in C++ programs often relies on clever memory allocation.

45. Loops

I use just two kinds, for and while loops. These are especially useful when combined with break (which exits

the current loop) and continue (which goes back to the beginning of the loop) inside the loops. The basic for
loop is standard:

for i in range(3, 17):

...

but range denotes here the array of numbers [3, ... , 16] and can be replaced by any kind of sequence.

46. Conditionals

if ... :

...

elif ... :

...

else:

...

Testing equality is done with ==.

47. Modules

There are many packages in Python which may be optionally loaded. One of the most important is the math
module, which is used in a program like this:

import math

...

c = math.sqrt(a*a + b*b)

...

C = 2*math.pi*r

or

from math import *

...

c = sqrt(a*a + b*b)

PiScript manual (7:47 a.m. June 23, 2010) 81

C = 2*pi*r

Importing basicallymakes names of variables and functions available. Youhave to be careful—in the last example,

the sqrt from mathwill replace whatever sqrt function you have defined locally.

In a πS program, once you have imported PiModule you get math for free.

You can also make your own modules, which makes for much less redundant programming.

48. Command line arguments

If the file sum is

#!/usr/bin/python

import sys

m = int(sys.argv[1])

n = int(sys.argv[2])

calculates sum of integers from m up to n

s = 0

for i in range(m, n):

s += i

print "s = " , s

then

sum 1 10

will print out the correct sum. Also, unlike in some other languages, argv[0] is the command itself. Thus in

python sum.py 5 10

the 0­th argument is sum.py.

49. Learning more

The following list of web sites devoted to quirks of Python was brought to my attention by Christophe K.:

http://jaynes.colorado.edu/PythonIdioms.html

http://zephyrfalcon.org/labs/python_pitfalls.html

http://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks

http://www.onlamp.com/pub/a/python/2004/02/05/learn_python.html

http://www.ferg.org/projects/python_gotchas.html

PiScript manual (7:47 a.m. June 23, 2010) 82

Appendix 3. Inserting your beautiful figures into T EX files

Including your figures in a TEX file is easy.

Latex. If you have produced a figure x.eps, you could insert it in a (rather silly) LATEX file like this:

\documentclass[a4paper,12pt]{article}

\usepackage{epsf}

\begin{document}

Here is the figure {\bf x.eps}:

\epsfbox{x.eps}

\end{document}

There are other ways to do this in LATEX, but this is the simplest and most flexible that I know of.

Plain TEX. For plain TEX it is even easier—just put \input epsf at the head of your file. Like this:

\input{epsf}

Here is the figure {\bf x.eps}:

\epsfbox{x.eps}

\bye

Both. There is one additional useful thing to keep in mind—you can modify the size of the figure inserted by

specifying width or height, as in one of these variants:

\epsfxsize=3cm

\epsfbox{x.eps}

\epsfxsize=3truecm

\epsfbox{x.eps}

\epsfysize=1truein

\epsfbox{x.eps}

It is important to know that the effect of one of these size specifications disappears after each use. Another useful

variation is this, which centers the figure:

\leavevmode

\hfill

\epsfbox{images/int.eps}

\hfill

\null

At any rate, run TEX on the tex file to get a .dvi file; run dvips on the .dvi file to get a .ps file, and epstopdf to

get a .pdf file. If the name of the TEX file is fig.tex, for example, this goes

tex fig

dvips -o fig.ps fig

epstopdf fig.ps

PiScript manual (7:47 a.m. June 23, 2010) 83

For more information, look up information on dvips on the Internet.

PiScript manual (7:47 a.m. June 23, 2010) 84

Appendix 4. The make utility

I recall my indubitably excellent advice—be sure to name your .py and the corresponding .eps files with the

same prefix, so that x.py produces x.eps. This will be a definite step towards maintaining sanity. We’ll see some
additional very good reasons to do that in this section.

If you have followed the conventions I recommend without qualification, the file x.eps will depend on the file
x.py. When you change x.py, you have to run Python on it to get the corrected file x.eps. You can automate

the update process, by using the program make to keep track of the dependency.

The simplest way to do this is to keep in the same directory as your .py files a file named makefile. In this file,

you first specify that a file with extension .eps depends on one with extension .py. You do this by putting at the

very top of makefile

.SUFFIXES: .py .eps

.py.eps:

python $*.py

The first line says that extensions .py and .eps are “of interest". The next group says that in order to produce a

file x.eps from a file x.py, Python should be run on it. The term $* here stands for the prefix of a file. The effect

of this is that if you type

make x.eps

in the directory, then the system will look for a file x.py, check to see whether it has been modified since x.eps
was last modified, and if so run Python on it. I call that very clever. But you can carry this one step further, by

putting in makefile a list of files of interest. So in this case we put lower down the line

all: x.eps y.eps

and now when you type just make the system will update x.eps and y.eps if necessary. At least as long as you
have followed the conventions I suggest and name your output file consistently with the .py file in the init line.

This can be carried much further. For example, .dvi files depend on .tex files, etc. But there is one observation
useful right here. If you want to produce .pdf files instead of .eps files, your local makefile should look like

this:

.SUFFIXES: .py .eps .ps .pdf .dvi .tex

.tex.dvi:

latex $*.tex

.dvi.ps:

dvips -o $*.ps $*.dvi

.py.eps:

python $*.py

.eps.pdf:

epstopdf $*.eps

.ps.pdf:

epstopdf $*.ps

PiScript manual (7:47 a.m. June 23, 2010) 85

all: x.pdf y.pdf

PiScript manual (7:47 a.m. June 23, 2010) 86

Appendix 5. Index of commands

Commands are followed by the number of the page on which they are described.

Basic commands

append: 44

arc: 14

arcarrow: 28
arcarrow: 28

arcn: 15

arcnarrow: 28
arcnarrow: 28

arrow: 27
atransform: 19

beginpage: 5

boundedbox: 15
box: 15

center: 17

charpath: 44
circle: 15

clip: 13
closepath: 14

comment: 59

currentbbox: 6
currentcenter: 22

currentlinewidth: 26

curveto: 12
dimensions: 42

dimensions: 45
embed: 33

endpage: 5

eol: 59
fill: 8

finish: 5

graph: 16
(GraphicsState).transform: 22

grestore: 17
grid: 16

gsave: 17

height: 6
importEPS: 59

importPS: 59

init: 4
linethrough: 19

lineto: 7
lrevert: 22

moveto: 7

newpath: 7
openarrow: 27

parallelogram: 15

place: 32

PiScript manual (7:47 a.m. June 23, 2010) 87

polygon: 16

putPS: 59
quadarrow: 27

quadto: 12

rcurveto: 12
reflect: 19

revert: 22
rlineto: 11

rmoveto: 11

rotate: 18
rquadto: 12

scale: 18

scalelinewidth: 26
setarrowdims: 26

setcolor: 26
setdash: 25

setdeg: 14

setfont: 41
setlinecap: 24

setlinejoin: 24

setlinewidth: 26
setmiterlimit: 24

setrad: 14
settexcommand(s): 39

settexenv: 39

settexpostfix(s): 39
settexprefix: 39

settexsave: 35

shfill: 29
show: 42

stroke: 7
texarrow: 28

texinsert: 32

(TexInsert).atransform: 35
(TexInsert).reflect: 35

(TexInsert).rotate: 35

(TexInsert).scale: 35
(TexInsert).translate: 35

todeg: 14
torad: 14

translate: 18

width: 6
zoom: 21

3D commands

closepath3d: 47
convexsurface: 50

curveto3d: 47

face: 50
geteye: 47

getlight: 48
grestore3d: 46

PiScript manual (7:47 a.m. June 23, 2010) 88

gsave3d: 46

lineto3d: 47
moveto3d: 46

paint: 50

project: 70
reverse: 50

rlineto3d: 47
rmoveto3d: 46

rotate3d: 46

scale3d: 46
seteye: 46

setlight: 48

setshading: 50
setshading: 53

smoothconvexsurface: 50
sphere: 51

translate3d: 46

